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We describe the observable content of some of the most widely used
models of decision under uncertainty: models of translation invariant
preferences. In particular, we characterize the models of variational,
maxmin, CARA and CRRA utilities. In each case we present a re-
vealed preference axiom that is satisfied by a dataset if and only if
the dataset is consistent with the corresponding utility representa-
tion. We test our axioms using data from an experiment on financial
decisions.

INTRODUCTION
This paper is an investigation of the testable implications of
models of decision under uncertainty. We carry out this in-
vestigation in financial markets, one of the most common en-
vironments in which human subjects face uncertainty.

Risk is uncertainty which can be objectively quantified prob-
abilistically. A gambler in a casino faces risk: he may calculate
the probability that a roulette wheel stops on the number 7,
or that a die lands on 5. Most scientists, in contrast, face
the more general concept of uncertainty, and study subjects
who face uncertainty. Scientists conduct or analyze experi-
ments with outcomes that they do not know, and for which
no probabilities are objectively given.

Of course, the scientist or the subject may have a subjective
judgement of how likely different events are. Such judgements
may even have a probabilistic expression, but the uncertainty
is not resolved by means of a mechanical device for which prob-
abilities can be objectively calculated. Moreover, this fact may
cause subjects to display uncertainty aversion, a tendency to
prefer risky bets over uncertain ones. Uncertainty aversion
was famously documented by David Ellsberg [7], and the the-
ories we treat in our paper are in part designed to describe
uncertainty aversion.

In uncertain situations, human subjects choose among un-
certain prospects. These are functions specifying an “outcome”
for each element of a given set of “states of the world.” Think
of an insurance contract that pays off a given sum only if
some accident occurs. The set of states of the world is the
binary set that codifies whether an accident has occurred, and
the outcome is the payoff. In financial markets, the uncertain
prospects correspond to financial assets, while the state of the
worlds describe the relevant economic fundamentals, and the
outcomes monetary payoffs.1

A long tradition in decision theory develops models of how
humans make decisions under uncertainty. A crucial idea in
this development is that of translation invariance. Translation
invariance means that if two uncertain prospects are trans-
formed in the same way, by adding to each prospect a given,
fixed, monetary payment, then the subject’s preference be-
tween the two prospects should be preserved. For example, if
the subject prefers insurance contract A over B, then the pref-
erence should be maintained after the price of each insurance
contract has been raised by the same amount. A related idea
is homotheticity where scaling the payoffs of the two contracts
should not affect how they are ranked. Translation invariance

and homotheticity give rise to different theories of decision
under uncertainty.

Theories demand to be tested, and our contribution lies in
working out the testable implications of theories of homoth-
etic and translation invariant behavior under uncertainty. We
focus on financial markets because these are some of the most
familiar and common uncertain environments for human sub-
jects. If one is to test a theory, it makes sense to study it in
the subjects’ most familiar environments. It is plausible that
agents do not know how to behave in an artificial environment,
but that they have learned how to deal with uncertainty in
familiar environments. For human subjects, few uncertain en-
vironments are as familiar as financial markets. Most existing
experimental environments are artificial: they involve human
subjects choosing among bets on extractions of colored balls
from urns of uncertain composition (Ellsberg’s thought exper-
iments are the best known of these; [7]). Our contribution is
instead to focus on designs based on financial markets.

Our main results characterize the financial datasets that are
consistent with the theories. Given is a finite collection of data
on purchases of financial assets. The question is when are such
data consistent with a theory of choice under uncertainty. We
provide answers for some of the most commonly encountered
theories, those based on translation invariance and homoth-
eticity.

We show that our results are applicable to the analysis and
design of experiments by using a recent experiment by Hey
and Pace: [11]. Hey and Pace have subjects decide on pur-
chases of financial assets. We use the data they collect to test

Significance

The paper uncovers the empirical content of many behavioral
models of decisions under uncertainty. Studies of global finan-
cial markets often ignore a very important piece of the puzzle:
individual behavior. We provide tests (and as such, predictions)
about how individuals behave when facing uncertainty, such as
that faced in financial or asset markets. Behavior at the in-
dividual level must be understood before the behavior of the
economy at large can even begin to be understood.

Reserved for Publication Footnotes

1In probability theory, an uncertain prospect together with an underlying probability over the states
of the world is termed a random variable.
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for consistency with maxmin expected utility, a theory of de-
cision under uncertainty based on translation invariance and
homotheticity. The conclusion of our analysis is that Hey and
Pace’s data reject the maxmin theory. The finding is prelimi-
nary, and meant mainly as an illustration of our methods, but
if confirmed it would mean that some of the best known the-
ories of choice under uncertainty, theories that are thought of
as weak, and accommodating of diverse behavioral and psy-
chological phenomena, do not in fact stand up to empirical
scrutiny on data from financial experiments.

The theories covered by our results include risk neutral vari-
ational preferences [13], risk neutral maxmin preferences [8],
and subjective expected utility preferences with constant ab-
solute risk aversion: so-called CARA preferences. Analogously
to the CARA case, we also work out the testable implications
of subjective expected utility preferences with constant rel-
ative risk aversion: so-called CRRA preferences (these form
the “homothetic” class alluded to in the title). The theo-
ries have been used for different purposes. Variational and
maxmin preferences are the most commonly-used models of
uncertainty aversion [8, 5, 13, 14]. They are also used to cap-
ture model robustness [10]. CARA and CRRA preferences are
extremely common in applied work in macroeconomics and fi-
nance, among other fields.

[9], [20], and [12] carry out similar exercises to ours, also
focusing on financial market experiments, but in a context of
risk, not uncertainty. The closest papers to ours are [6],[2] and
[15]. [6] studies the case of subjective expected utility; it does
not address the more general theories studied here, and that
have been proposed to address the empirical shortcomings of
subjective expected utility. [2] and [15] treat some of the same
theories as we do, but give a characterization in terms of the
solution of a system of inequalities. We give a revealed prefer-
ence axiom (a characterization that references only observable
data) that has to be satisfied for the data to be rationaliz-
able. It can be written in the UNCAF form, which is the kind
of axiom that characterizes the empirical content of a theory
[4]. A system of (nonlinear) inequalities may not give an eco-
nomic interpretation to the characterization, and it may not
be computationally feasible.2

DEFINITIONS
Let S be a finite set of states of the world. An act is a func-
tion from S into R; RS is the set of acts. An act can be
interpreted as a state-contingent monetary payment. Define
‖x‖1 =

∑

s xs. ∆(S) represents the set of probability distri-

butions on S, i.e. ∆(S) = {π ∈ RS
+ :
∑

s
πs = 1}.

A preference relation on RS is a complete and transitive
binary relation �; we denote by ≻ the strict part of �. A
function u : RS → R defines a preference relation � by x � y
if and only if u(x) ≥ u(y). We say that u represents �, or that
it is a utility function for �. A preference relation � on RS

is locally nonsatiated if for every x and every ǫ > 0 there is y
such that ‖x− y‖ < ǫ and y ≻ x.

PREFERENCES, UTILITIES, AND DATA
A data set D is a finite collection {(pk, xk)}Kk=1, where each
pk ∈ RS

++ is a vector of strictly positive (so-called Arrow-

Debreu) prices, and each xk ∈ RS is an act. The interpreta-
tion of a dataset is that each pair (pk, xk) consists of an act

xk chosen from the budget {x ∈ RS : pk · x ≤ pk · xk} of af-
fordable acts. Such data sets are common in financial markets
experiments: [1, 2, 11].

A data set {(pk, xk)}Kk=1 is rationalizable by a preference re-
lation � if xk � x whenever pk · xk ≥ pk · x. So a data set is
rationalizable by a preference relation when the choices in the
dataset would have been optimal for that preference relation.
A data set {(pk, xk)}Kk=1 is rationalizable by a utility function
u if it is rationalizable by the preference relation represented
by u. So a data set is rationalizable by a utility function when
the choices in the dataset would have maximized that utility
function in the relevant budget set.

A preference relation � is translation invariant if for all
x, y ∈ RS and all c ∈ R, we have x � y if and only if
x+ (c, . . . , c) � y + (c, . . . , c).

A preference relation � is homothetic if for all x, y ∈ RS

and all α > 0, we have x � y if and only if αx � αy.
A preference relation � is a risk-neutral variational prefer-

ence if there is a convex and lower semicontinuous function
c : ∆(S) → R ∪ {+∞} such that the function

inf
π∈∆(S)

π · x+ c(π)

represents �. If a data set is rationalizable by a risk-neutral
variational preference relation, we will say that the dataset set
is risk-neutral variational-rationalizable.

A special case of variational preference is maxmin: A pref-
erence relation is risk-neutral maxmin if there is a closed and
convex set Π ⊆ ∆(S) such that the utility function

inf
π∈Π

π · x

represents �. If a data set is rationalizable by a risk neutral
maxmin preference relation, we will say that the dataset set
is risk-neutral maxmin-rationalizable. More generally, a pref-
erence relation is risk averse maxmin if there is a closed and
convex set Π ⊆ ∆(S), where for each π ∈ Π and each s ∈ S,
πs > 0, and a concave utility u : RS → R such that the utility
function

inf
π∈Π

∑

s=1,2

πsu(xs)

represents �. If a data set is rationalizable by a maxmin pref-
erence relation, we will say that the dataset set is maxmin-
rationalizable.

A utility u : RS → R is constant absolute risk aversion
(CARA) if there is α > 0 and π ∈ ∆(S) for which for all
s ∈ S, πs > 0, and

u(x) =
∑

s∈S

πs (− exp(−αx)) .

Note that CARA is a special case of subjective expected util-
ity.3

A utility u : RS → R is constant relative risk aversion
(CRRA) if there is α ∈ (0, 1) and π ∈ ∆(S) for which for all
s ∈ S, πs > 0, and

u(x) =
∑

s∈S

πs

(

x1−α

1− α

)

.

If a data set is rationalizable by a CARA (CRRA) utility, we
will say that the dataset set is CARA (CRRA) rationalizable.

2The paper [2] is a case in point, where the solution to the system of inequalities is implemented by
a grid search. A conclusive test is not possible since they results depend on the assumed granularity
of the grid.
3 In fact it is also a special case of a risk neutral variational preference, a fact exploited by [19].
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VARIATIONAL AND MAXMIN PREFERENCES
We present the results on variational and maxmin rational-
izability as Theorems 1 and 2. These models satisfy the hy-
pothesis that for any x, y, x ∼ y =⇒ 1

2
x + 1

2
y � y. This

hypothesis is known as convexity of preference. Convexity is
related to uncertainty aversion in the sense of [8]. In fact,
given the assumptions of monotonicity found in that paper,
together with the assumption that the preference is risk neu-
tral (i.e. lotteries are evaluated according to their expected
value), it is equivalent to uncertainty aversion. Uncertainty
aversion is the idea that an agent dislikes uncertainty, and
suffers from his ignorance of the possible probability distribu-
tion that governs outcomes.

One important conclusion that emerges from our analysis is
that convexity is not testable with market data. This therefore
means that under the maintained hypothesis of risk neutrality
(and monotonicity), uncertainty aversion cannot be detected
with financial data.
Theorem 1: The following statements are equivalent:

1. Dataset D is rationalizable by a locally nonsatiated, trans-
lation invariant preference.

2. Dataset D is rationalizable by a continuous, strictly in-
creasing, concave utility function satisfying the property
u(x+ (c, . . . , c)) = u(x) + c.

3. Dataset D is risk-neutral variational-rationalizable.
4. For every l = 1, . . . ,M , and every sequence {kl} ⊆

{1, . . . ,K},

M
∑

l=1

pkl

‖pkl‖1
· (xkl+1 − xkl) ≥ 0,

where addition is modulo M , as usual.

Note that the equivalence between (2) and (3) is due to [13].

Remark: The fact that (1) implies (2) and (3) implies that if
data are rationalizable by a translation invariant preference,
they are also rationalizable by a risk-neutral variational pref-
erence (which automatically satisfies convexity).
Remark: The preceding result can be generalized. Suppose
we were interested in the testable implications of preferences
which are β-translation invariant, for some β ≥ 0, β 6= 0.
That is, we want to know whether for all x, y, we have x � y
if and only if for all t, x + tβ � y + tβ. Define the seminorm
‖x‖β1 =

∑

i
|βixi|. Then it is an easy exercise to verify that

the testable implications of β-translation invariance are given
by equation (4), replacing ‖ · ‖1 with ‖ · ‖β1 .

Remark: The test in (4) is related to cyclic monotonicity.
This is similar to the test given in [3] for quasilinear prefer-
ences (and to a result in [16]).

We now turn our attention to maxmin preferences.
We say that a function u : RS → R is linearly homogeneous

if for all x ∈ RS and all α > 0, we have u(αx) = αu(x).

Theorem 2: The following statements are equivalent:

1. Dataset D is rationalizable by a locally nonsatiated, homo-
thetic and translation invariant preference.

2. Dataset D is rationalizable by a continuous, strictly in-
creasing, linearly homogeneous and concave utility function
satisfying the property that u(x+ (c, . . . , c)) = u(x) + c.

3. Dataset D is risk-neutral maxmin-rationalizable.
4. For every k and l,

pk

‖pk‖1
· xk ≤

pl

‖pl‖1
· xk.

The equivalence between (2) and (3) is due to [8]. Here we
prove it through an application of Theorem 1.

It is interesting to note that, just as in Theorem 1, under
the maintained hypotheses of risk aversion and monotonicity,
uncertainty aversion has no content for behavior.

Remark: The rationalizing variational and maxmin prefer-
ences can be taken to imply “full support” priors. In the
proof of Theorem 1, we shown that there is π ∈ ∆(S) satisfy-
ing c(π) < +∞, which implies for all s ∈ S, πs > 0. And in
the proof of Theorem 2 we show that for each π ∈ Π and all
s ∈ S, πs > 0.

CARA AND CRRA
The previous section considers translation invariance and ho-
motheticity as general properties of preferences in choice under
uncertainty. Here we focus on the case of subjective expected
utility. So we consider models in which the agent has a single
prior over states, and maximizes expected utility. The prior is
unknown and must be inferred from her choices. Translation
invariance gives rise to CARA preferences, and homotheticity
to CRRA.

Theorem 3: A dataset D is CARA rationalizable if and only
if there is α∗ > 0 such that (1) holds for all k, k′ ∈ K and
s, t ∈ S; and CRRA rationalizable if and only if there is
α∗ ∈ (0, 1) such that (2) holds for all k, k′ ∈ K and s, t ∈ S.

α∗(xk
t − xk

s + xk′

s − xk′

t ) = log

(

pks
pkt

pk
′

t

pk′

s

)

[1]

α∗ log

(

xk
t

xk
s

xk′

s

xk′

t

)

= log

(

pks
pkt

pk
′

t

pk′

s

)

[2]

The conditions in Theorem 3 may look like existential con-
ditions: essentially Afriat inequalities. Afriat inequalities are
indeed the source of equations (1) and (2), as evidenced by the
proof of Theorem 3, but note that the statements are equiv-
alent to non-existential statements: Equation (1) says that

when (xk
t − xk

s + xk′

s − xk′

t ) 6= 0,

log(
pks
pkt

pk
′

t

pk
′

s

)

(xk
t − xk

s + xk′

s − xk′

t )

is independent of k, t, k′ and s; and that when (xk
t −xk

s +xk′

s −

xk′

t ) = 0 then log(
pks
pkt

pk
′

t

pk
′

s

) = 0. Similarly for equation (2).

It is worth pointing out that, except in the case when for all
observations, all prices are equal, and consumption of all goods
are equal, equation (1) can have only one solution. Hence, risk
preferences are uniquely identified.

The next corollary also shows that beliefs are identified. Re-
call that a CARA utility is defined by a pair (a, π), with a > 0
and π ∈ ∆(S).

Corollary: If (a, π) and (a′, π′) define CARA utilities that
rationalize D, then (a, π) = (a′, π′). Furthermore, a = a′ co-
incide with the unique solution to (1). Similarly for CRRA
rationalizability and (2).

RISK AVERSE MAXMIN WITH TWO STATES
Theorem 2 is about risk neutral maxmin. Here we turn to
maxmin with risk aversion. In this section, we assume that

Footline Author PNAS Issue Date Volume Issue Number 3
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there are two states (i.e., S = {1, 2}). A preference relation is
maxmin if there is a closed and convex set Π ⊆ ∆(S), where
for each π ∈ Π and each s ∈ S, πs > 0, and a concave utility
u : RS → R such that the utility function

inf
π∈Π

∑

s=1,2

πsu(xs)

represents �. If a data set is rationalizable by a maxmin pref-
erence relation, we will say that the dataset set is maxmin-
rationalizable.

Let K0 be the set of all k such that xk
1 = xk

2 . Let K1 be the
set of all k such that xk

1 < xk
2 , and K2 be the set of all k such

that xk
1 > xk

2 . Note that K = K0 ∪K1 ∪K2.

Say that a sequence of pairs (xki
si
, x

k′
i

s′
i

)ni=1 is balanced if each

k appears as ki (on the left of the pair) the same number of
times it appears as k′

i (on the right).

Given a sequence of pairs (xki
si
, x

k′
i

s′
i

)ni=1, consider the fol-

lowing notation: Let Il,s = {i : ki ∈ Kl and si = s},
I ′l,s = {i : k′

i ∈ Kl and s′i = s}, for l = 0, 1, 2 and s = 1, 2.

Axiom: Strong Axiom of Revealed Maxmin Expected
Utility (SARMEU) For any balanced sequence of pairs

(xki
si
, x

k′
i

s′
i

)ni=1 in which

1. xki
si

> x
k′
i

s′
i

for all i;

2. #I0,1 +#I1,1 −#I ′1,1 = #I ′0,1 +#I ′2,1 −#I2,1 ≤ 0

The product of prices satisfies that

n
∏

i=1

pki
si

p
k′
i

s′
i

≤ 1. [3]

Theorem 4: A dataset is maxmin rationalizable if and only
if it satisfies SARMEU.

[6] show that a stronger axiom, Strong Axiom of Revealed
Subjective Expected Utility (SARSEU), characterizes ratio-
nalizability by subjective expected utility. Instead of condition
(2) of SARMEU, SARSEU requires

#I0,1 +#I1,1 +#I2,1 = #I ′0,1 +#I ′1,1 +#I ′2,1. [4]

Theorem 4 is useful because it makes explicit what one
would need to see in an experiment (with two states, a com-
mon setup in laboratory experiments) in order for choices to
be consistent with maxmin utility, but inconsistent with sub-
jective expected utility. For a dataset to be maxmin ratio-
nalizable, but inconsistent with subjective expected utility, it
needs to contain a sequence in the conditions of SARSEU in
which #I0,1+#I1,1+#I2,1 = #I ′0,1+#I ′1,1+#I ′2,1, but where
#I0,1 +#I1,1 −#I ′1,1 > 0.

As we have emphasized, the result in Theorem 4 is for two
states. There are two simplifications afforded by the assump-
tion of two states, and the two are crucial in obtaining the
theorem. The first is that with two states there are only two
extreme priors to any set of priors. With the assumption that
u is monotonic, one can know which of the two extremes is
relevant to evaluate any given act.4 The second simplification
is a bit harder to see, but it comes from the fact that one can
normalize the probability of one state to be one and only keep
track of the probability of the other state. Then the property
of being an extreme prior carries over to the probability of the
state that is left “free.”5

Type Allocation K MEU
1a Color 2 and 3 14 0.054
1b Color 3 and 1 15 0.031
1c Color 1 and 2 12 0.070
2a Color 1 and (2 or 3) 9 0.078
2b Color 2 and (1 or 3) 14 0.039
2c Color 3 and (1 or 2) 12 0.054

TESTING MAXMIN
[11] study models of decision making under uncertainty using
data from a laboratory experiment. 129 subjects are asked
to allocate 50 experimental tokens between two states, states
s or s′. Tokens allocated to each state have a value of as

and as′ . If a subject decides to allocate cs tokens to state s,
then he obtains a payment of cs ·as when state s realizes; and
(50− cs) · as′ when state s′ realizes.

In each decision problem, each subject’s decision is charac-
terized by a triple (as, as′ , cs), where cs is the number of tokens
she decides to allocate to state s. To map such decision to our
notion of data, set prices to be ps = as′/as and ps′ = 1 (a nor-
malization), and I = 50 · as′ . Then, we define consumptions
(monetary amounts) as xs = cs · as and xs′ = (50− cs) · as′ .

In the experiment, there are three underling states: “color”
1, 2, and 3. But only two states are relevant in each decision.
So we can test SARMEU. [11] used a Bingo Blower to decide
a realization of a state. The Bingo Blower is a rectangular-
shaped, glass-sided object in which many balls, whose color is
either 1,2, or 3, are in continuous motion being moved by a
wind from a fan in the base. A ball is drawn is from the Bingo
Blower and the color of the ball determines the state.6In total,
each subject thus completes 76 decision problems. There are
two types of decision problems. Type 1 problems asked sub-
jects to allocate tokens between two of the three colors, while
type 2 problems asked them to make allocations between one
of the three colors and the other two. There were 41 type
1 problems and 35 type 2 problems. For example, in type 1
problem, state s = {color 1}; state s′ = {color 2}. In type 2
problem, state s = {color 1}; state s′ = {color 2, color 3}.

One of the conclusions by [11] is that according to the
Bayesian Information Criterion, the loss in predictive power in
using SEU instead of generalizations of SEU is relatively small
in magnitude. We test SARMEU for each individual subject
and for each type of decision problem. The tests are based
on linearized Afriat inequalities presented in the proofs of the
theorems in [6] and in Lemma 1 of Theorem 4.

The table summarizes the results. Across six types of deci-
sion problems, we find that about 3% to 8% of the 129 subjects
are MEU rational. Our result shows that MEU does not ex-
plain the subjects choices. This implies that SEU, a special
case of MEU, does not explain the subjects choices either. One
conclusion of our results is that decision theorists’ efforts to
account for experimental behavior does not seem to go very
far in explaining the Hey-Pace data.

PROOFS
We provide the proofs of Theorem 1,2, and 3. We omit the
proof of Theorem 4, which is similar to the proofs in [6].7

4This would also be true in the model of [17], whose uncertainty averse counterpart is equivalent
to MEU in the case of two states.
5This can be seen in the proof of Lemma 1 when we go from π̄ ≥ π to µ̄1 ≥ µ

1
.

6The idea behind the use of a Bingo Blower was that subjects could not have sufficient information
to calculate objective probabilities.
7The omitted proof is available in the authors’ web page.

4 www.pnas.org — — Footline Author
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PROOF OF THEOREM 1.That [3] =⇒[1] is obvious. We
shall first prove that [1] =⇒[4]

Suppose, towards a contradiction, D is a dataset satisfy-

ing [1] but not [4]. Then we have a cycle
∑M

l=1
pkl

‖pkl‖1
·

(xkl+1 − xkl) < 0. Let us without loss assume the se-
quence is x1, . . . , xM so as to avoid cumbersome notation. Let

Z =
∑M

l=1
pl

‖pl‖1
· (xl+1 − xl) < 0.

Define a new sequence (y1, . . . , yM ) inductively. Let y1 =

x1, and let yk = xk + (ck, . . . , ck) where ck is chosen so that
pk

‖pk‖1
· (yk+1 − yk) = Z

M
. Specifically, c1 = 0 and

ck+1 = ck +
Z

M
−

pk

‖pk‖1
· (xk+1 − xk)

for k = 1, . . . ,M −1. Let qk = pk

‖pk‖1
and consider the dataset

(qk, yk), k = 1, . . .M .
The original dataset is rationalizable by some locally non-

satiated and translation invariant preference �. It is easy to
see that the same preference rationalizes the dataset (qk, yk).
Indeed, if qk ·yk ≥ qk ·y then pk ·xk ≥ pk ·(y−(ck, . . . , ck)), by

definition of yk and qk. So xk � (y − (ck, . . . , ck)), and thus
yk � y by translation invariance of �.

Observe that
M−1
∑

k=1

qk · (yk+1 − yk) + qM · (y1 − yM )

=
M
∑

k=1

pk

‖pk‖1
· (xk+1 − xk)

+

M
∑

k=1

pk

‖pk‖1
· ((ck+1, . . . , ck+1)− (ck, . . . , ck))

=
M
∑

k=1

pk

‖pk‖1
· (xk+1 − xk) +

M
∑

k=1

(
∑

s∈S
pks)(c

k+1 − ck)

‖pk‖1

=
M
∑

k=1

pk

‖pk‖1
· (xk+1 − xk) (∵ ‖pk‖1 =

∑

s∈S

pks)

= Z (∵ Definition of Z),

and that qk · (yk+1− yk) = Z/M for k = 1, . . . ,M − 1. There-
fore, qM · (y1 − yM ) = Z/M . In particular, qk · (yk+1 − yk) =
Z/M < 0 for k = 1, . . . ,M (mod M). Thus yk ≻ yk+1 as

(qk, yk) is rationalizable by � and � is locally nonsatiated.
This contradicts the transitivity of �.

Now we show that [4] =⇒[2]. Let x ∈ RS. Let Σx be the
set of all subsequences {kl}

M
l=1 ⊂ {1, . . . ,K} for which k1 = 1

and define xkM+1 = x. By [4], if {kl}
M
l=1 ∈ Σx has a cycle

(meaning that kl = kl′ for l, l′ ∈ {1, . . . ,M} with l 6= l′), then

there is a shorter sequence {kj}
M′

j=1 ∈ Σx with

M′
∑

j=1

pkj

‖pkj‖1
· (xkj+1 − xkj ) ≤

M
∑

l=1

pkl

‖pkl‖1
· (xkl+1 − xkl).

Therefore, u(x) = inf{
∑M

l=1
pkl

‖pkl‖1
· (xkl+1 − xkl) : {kl}

M
l=1 ∈

Σx} is well defined, as the infimum can be taken over a finite
set.

That u : RS → R defined in this fashion is concave, strictly
increasing and continuous is immediate. To see that it ra-
tionalizes the data, suppose that pk · xl ≤ pk · xk. Then

pk

‖pk‖1
· xl ≤ pk

‖pk‖1
· xk. It is clear then by definition that

u(xl) ≤ u(xk) + pk

‖pk‖1
· (xl − xk) ≤ u(xk).

Finally, to show that u(x+ (c, . . . , c)) = u(x) + c, note that

for any pk, we have pk

‖pk‖1
· (x+(c, . . . , c)) = c+ pk

‖pk‖1
·x. The

result then follows by construction.
We end the proof by showing that [2] =⇒[3] Let u : RS →

R be as in the statement of [2]. Define the concave conjugate
of u by

f(π) = inf{π · x− u(x) : x ∈ RS}

= inf{π · x+ cπ · 1− u(x)− c : x ∈ RS , c ∈ R}

= inf{π · x− c(1− π · 1)− u(x) : x ∈ RS , c ∈ R},

where the second equality uses that u(x+(c, . . . , c)) = u(x)+c.
Now note that f(π) = −∞ if (1 − π · 1) 6= 0. Note also that
the monotonicity of u implies that f(π) = −∞ if there is s
such that πS < 0. One can also show that there is π ∈ ∆(S)
for which f(π) ∈ R.8 Finally, observe that by strict mono-
tonicity, if there is s ∈ S for which πs = 0, then f(π) = −∞.
Hence we can consider the domain of f to be a subset of ∆(S).
Moreover, f(π) < +∞ implies for all s ∈ S, πs > 0.

Now since u is continuous, it is a standard application of
the separating hyperplane theorem to establish that u(x) =
infπ∈∆(S) π · x − f(π). Since u rationalizes the dataset, the
dataset is variational rationalizable.

PROOF OF THEOREM 2. It is obvious that [3] =⇒[2] and
that [2] =⇒[1]. Hence, to show the theorem, it suffices to
show that [4] implies [3] and that [1] implies [4].

For a dataset D, let πk = pk

‖pk‖1
. It is easy to see that [4]

=⇒[3]. Let Π be the convex hull of {πk : k = 1, . . . ,K}.
Then it is immediate that u(x) = minπ∈Π π · x rationalizes D.
Moreover, for each π ∈ Π and all s ∈ S, πs > 0 because πk

s > 0
for all s ∈ S and k ∈ K.

We prove that [1] =⇒[4]. Suppose that D satisfies [1] but
not [4]. Then there are k and l for which πl · xk < πk · xk.
Let � be a preference relation as stated in [1]. By homo-
theticity of �, for any scalar θ > 0, � rationalizes the data
D′ ≡ {(xj , πj) : j = 1, . . . ,K} ∪ {(θxl, πl)}. To see this, ob-

serve that if πl · x ≤ πl · θxl, then πl · θ−1x ≤ πlxl, so that
xl � θ−1 · x, and by homogeneity, θxl � x. Now, for θ > 0
sufficiently small, πl · xk < πk · xk implies that

xk · (πl − πk) + θxl · (πk − πl) < 0.

So either xk · (πl − πk) < 0 or θxl · (πk − πl) < 0. Then the
dataset D′ violates [4] in Theorem 1, contradicting the fact
that it is rationalized by �, which is assumed to be translation
invariant.

PROOF OF THEOREM 3.The idea in the proof is to solve
the first-order conditions for the unknown terms. Consider
first the case of CARA. Let π ∈ ∆(S) and α > 0 rationalize

D. Then we know that xk maximizes
∑

s πs (− exp(−αxs))

subject to pk · x ≤ pk · xk. By considering the Lagrangean

8For example, take π to support {z ∈ R
S : u(z) ≥ 0} at 0. We claim that f(π) ≥ 0.

Suppose by means of contradiction that there is x ∈ R
S for which π · x < u(x). Observe that

π supports {z ∈ R
S : u(z) ≥ π · x} at the act y which returns π · x in each state. Observe

that u(z) > π · x implies π · z > π · x, by continuity of u and definition of the supporting

hyperplane; that is, {z ∈ R
S : u(z) ≥ π · x} ⊆ {z ∈ R

S : π · z ≥ π · x} implies

{z ∈ R
S : u(z) > π · x} ⊆ {z ∈ R

S : π · z > π · x} as the latter sets are the interiors
of the former. Therefore, if u(x) > π · x, we conclude π · x > π · x, a contradiction.
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and the first order conditions, we may conclude that for every
s, t ∈ S and every k ∈ {1, . . . ,K}, we have

πs exp(−αxk
s)

pks
=

πt exp(−αxk
t )

pkt
.

Conclude that
pksπt

pkt πs
= exp(−α(xk

s − xk
t )). By taking logs, the

system becomes:

log(πs)− log(πt) + α(xk
t − xk

s) = log(pks)− log(pkt ). [5]

In the case of CRRA, the existence of a rationalizing π and
parameter α imply a first-order condition of the form

log(πs)− log(πt) + α log(xk
t /x

k
s) = log(pks)− log(pkt ). [6]

We can denote log(πs) by zs in equations [5] and [6]. Thus
we obtain that D is rationalizable if and only if there exist
zs ∈ R and α > 0 such that the following equation is solved
for all s, t, k with s 6= t:

zs − zt + α(yk
t − yk

s ) = log(pks)− log(pkt ),

where yk
t = xk

t for CARA rationalizability, and yk
t = log xk

t

for CRRA rationalizability.
Now the necessity of the axioms is obvious. Let k 6= k′, then

α(yk
t −yk

s )− log(pks/p
k
t ) = zs−zt = α(yk′

t −yk′

s )− log(pk
′

s /pk
′

t )

for any s and t. Thus

α(yk
t − yk

s − yk′

t + yk′

s ) = log(
pks
pkt

pk
′

t

pk′

s

).

So [1] is satisfied for the case of CARA rationalizability,
and [2] is satisfied for the case of CRRA rationalizability.

To prove sufficiency, let

dp(s, t, k) = log(pks/p
k
t )

dx(s, t, k) = yk
s − yk

t .

Let α∗ be such that for all k, k′, s, s′ and t,

α∗(yk
t − yk

s − yk′

t + yk′

s ) = log(
pks
pkt

pk
′

t

pk′

s

).

Then in particular, for all k, k′, s, s′ and t,

dp(s, t, k)+α∗dx(s, t, k)+ dp(t, s, k′)+α∗dx(t, s, k′) = 0. [7]

Note also that

dp(s, t, k) + dp(t, s′, k) + dp(s′, s, k)

+α∗(dx(s, t, k) + dx(t, s′, k) + dx(s′, s, k)) = 0.
[8]

Fix s0 ∈ S and let zs0 ∈ R be arbitrary. For any s ∈ S,
define zs by

zs = zs0 + α∗dx(s0, s, k) + dp(s, s0, k),

for some k. In fact, by equation [7], this definition is indepen-
dent of k because dp(s, s0, k) + α∗dx(s, s0, k) = dp(s, s0, k

′) +
α∗dx(s, s0, k

′).
Given this definition, note that

zs − zt = α∗(dx(s0, s, k)− dx(s0, t, k)) + dp(s, s0, k)− dp(t, s0, k)

= α∗(dx(s0, s, k)− dx(s0, t, k)) + dp(s, s0, k)− dp(t, s0, k)

+ dp(s, t, k) + dp(t, s0, k) + dp(s0, s, k)

+ α∗(dx(s, t, k) + dx(t, s0, k) + dx(s0, s, k))

= dp(s, t, k) + α∗dx(s, t, k),

where the second equality uses equation [8].
Hence, with the constructed (zt)t∈S we have

zs − zt + α∗(yk
t − yk

s ) = log(pks/p
k
t ),

for all s, t, and k. The first-order conditions for rationalizabil-
ity are therefore satisfied.
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