Question

Kota Saito

November 21, 2025

Let X be the set of alternatives. Let $\mathcal{D} \subset 2^X \setminus \emptyset$ be the set of choice sets.

Stochastic choice function: A function $\rho: \mathcal{D} \times X \to [0,1]$ is called a *stochastic choice*

function if $\sum_{x \in D} \rho(D, x) = 1$ and $\rho(D, x) = 0$ for any $x \notin D$.

For each $(D, x) \in \mathcal{D} \times X$, the number $\rho(D, x)$ is the probability that an alternative x

 $_{9}$ is chosen from a choice set D.

1

3

Rankings: Let Π be the set of bijections between X and $\{1, \ldots, |X|\}$, where |X| is the

number of elements of X. If $\pi(x) = i$, then we interpret x to be the |X| + 1 - i-th best

element of X with respect to π . If $\pi(x) > \pi(y)$, then x is better than y with respect to

 π . An element π of Π is called a *strict preference ranking* (or simply, a *ranking*) over X.

For all $(D, x) \in \mathcal{D} \times X$ such that $x \in D$, if $\pi(x) > \pi(y)$ for all $y \in D \setminus \{x\}$, then we often

write $\pi(x) \geq \pi(D)$. There are |X|! elements in Π .

$$\rho^{\pi}(D, x) = \begin{cases} 1 & \text{if } \pi(x) \ge \pi(D); \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

The function ρ^{π} gives probability one to the best alternative x in a choice set D according

to the strict preference ranking π . The following fact is elementary but fundamental:

We denote the set of probability measures over Π by $\Delta(\Pi)$. Since Π is finite, $\Delta(\Pi)$

 $\{(\nu_1,\ldots,\nu_{|\Pi|})\in\mathbf{R}_+^{|\Pi|}\big|\sum_{i=1}^{|\Pi|}\nu_i=1\big\},$ where \mathbf{R}_+ is the set of nonnegative real numbers.

20 We now introduce the definition of random utility model:

Definition 1. A stochastic choice function ρ is called a random utility function if there

exists a probability measure $\nu \in \Delta(\Pi)$ such that for all $(D, x) \in \mathcal{D} \times X$, if $x \in D$, then

$$\rho(D, x) = \nu(\pi \in \Pi | \pi(x) \ge \pi(D)).$$

- The probability measure ν is said to *rationalize* ρ . The set of random utility functions is denoted by \mathcal{P}_r .¹
- Observation: The set \mathcal{P}_r of random utility functions is a polytope, that is $\mathcal{P}_r = co.\{\rho^{\pi} | \pi \in \Pi\}$.
- The observation holds because any random utility function $\rho \in \mathcal{P}_r$ can be written as $\rho = \sum_{\pi \in \Pi} \nu(\pi) \rho^{\pi}$ for some probability measure ν , which is guaranteed to exist by the definition of a random utility function.

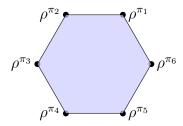


Figure 1: Random utility polytope

The hexagons in Figure 1 illustrates the polytope. Although the geometric intuition is useful, it is important to notice that the figure oversimplifies the reality since the number (i.e., |X|!) of vertices and the dimension of a random utility function can be very large.²
One concept that is useful for analyzing the polytope is *adjacency*. As you can see, in

Figure 1, ρ^{π_i} and $\rho^{\pi_{i+1}}$ are adjacent for each $i \leq 6.3$

This can be formalized as follows:

Definition 2. The two rankings π and π' are adjacent if there exists $t \in \mathbf{R}^{\mathcal{D} \times X}$ and $a \in \mathbf{R}$ such that (i) $\rho^{\pi} \cdot t = a = \rho^{\pi'} \cdot t$ and (ii) for any $\hat{\pi}$, if $\pi \neq \hat{\pi} \neq \pi'$, then $\rho^{\hat{\pi}} \cdot t > a$, where $\rho^{\pi} \cdot t \equiv \sum_{(D,x):x \in D \in \mathcal{D}} \rho^{\pi}(D,x) t(D,x)$ is the inner product.

35

¹While the function above is often called a random ranking function, a random utility function is often defined differently–by using the existence of a probability measure μ over utilities such that for all $(D,x) \in \mathcal{D} \times X$, if $x \in D$, then $\rho(D,x) = \mu(u \in \mathbf{R}^X | u(x) \ge u(D))$.

²To see why the dimension of a random utility function can be very large, notice that it assigns a number for each pair of $(D, x) \in \mathcal{D} \times X$.

³Assuming $\rho^{\pi_7} = \rho^{\pi_1}$.

For example, take ρ^{π_1} and ρ^{π_2} . Consider a line that passes through ρ^{π_1} and ρ^{π_2} . Notice

that only ρ^{π_1} and ρ^{π_2} are on the line and all of the other $\{\rho^{\pi_i}\}_{i\neq 1,2}$ are below the line.

Thus, conditions (i) and (ii) are indeed satisfied.

42

Question: Please answer the following two questions assuming $X = \{1, 2, 3\}$.:

44 **Hint:** In this case, there are six rankings: (1,2,3),(1,3,2),...,(3,2,1). For each ranking,

you can define ρ^{π} in the space of $\mathcal{D} \times X$ following (1).

46 Question 1: Assume $\mathcal{D} = \{\{1,2\},\{1,3\},\{2,3\}\}$. Find all adjacent vertices to the

ranking (1,2,3). Do your best to try to find all of them.

48 **Question 2:** Assume $\mathcal{D} = \{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$. Find all adjacent vertices to

the ranking (1,2,3). Do your best to try to find all of them.

Question 3: Assume that $|X| \geq 4$. Fix $\pi, \pi' \in \Pi$. Suppose that π, π' are not adjacent.

Show that there exist $\hat{\pi}, \hat{\pi}' \in \Pi$ such that

$$\frac{1}{2}\rho^{\pi} + \frac{1}{2}\rho^{\pi'} = \frac{1}{2}\rho^{\hat{\pi}} + \frac{1}{2}\rho^{\hat{\pi}'}.$$

(This equality means that we have the equality for each (D, x) such that $x \in D \in \mathcal{D}$.)