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Abstract

The random utility model, a cornerstone in economics, is axiomatized

by Falmagne (1978) and McFadden and Richter (1990) with the assumption

that if a menu is observable, the choice frequencies of all alternatives are

also observable. However, in practice, it is common for choice frequencies

of some alternatives to remain unobserved. To address this discrepancy, we

obtain the testable implications of the random utility model when the choice

frequencies of some alternatives are unobservable, which consist of nonre-

dundant inequality constraints on observed choice frequencies. Our findings

indicate that the widespread empirical practice of aggregating unobserved

alternatives into a single “outside option” fails to capture significant impli-

cations of random utility models.
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1 Introduction

Consider a population of individuals choosing an alternative from various choice

sets, where the analyst observes the choice frequencies of each alternative within

each set. A foundational framework for interpreting such datasets is the random

utility model, which posits a probability distribution over rankings of alternatives,

with each ranking representing an individual’s preferences. This model serves

as a central tool in economics for linking observed stochastic choice behavior to

underlying preference structures. Existing characterizations of the random utility

model by Falmagne (1978) and McFadden and Richter (1990) assume that the

choice frequencies of all alternatives in each menu are observable.1

However, it is often the case that the choice frequencies for some alternatives

are missing. For example, consider a set of transportation methods consisting of

bus, train, walking, and driving. While it may be possible to estimate the market

share of public transportation (bus or train) based on the revenue of bus or train

companies, it can be difficult to determine whether a person chooses to drive or

walk unless a survey is conducted. As a result, the choice frequencies for walking

and driving may not be available.

There are many other economically significant examples in which the choice

frequencies of some alternatives are not observable.2 In such situations, empirical

researchers often aggregate all unobservable alternatives into a single category and

treat it as an outside option, even when they know which specific alternatives are

unobservable. We refer to this approach as the outside option approach. With

this approach, all choice frequencies become observable because there is only one

outside option, and the choice frequencies of all other alternatives are known.3

1Falmagne (1978) axiomatized the random utility model under the assumption that choice
frequencies for all alternatives in all menus are observable. McFadden and Richter (1990) do not
require that all menus be observed, but when a menu is observed, they assume that the choice
frequencies for all alternatives in that menu are observable.

2For instance, consider school choice among private and public schools. Governments can
often obtain choice data for public schools but not for private schools. In this case, the choice
frequencies for public schools are observable, whereas those for private schools are not. See
Section 2.1 for further details.

3The choice frequency of the outside option is then calculated as one minus the sum of all
observable choice frequencies.
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The purpose of this paper is twofold. First, we investigate a necessary and

sufficient condition for a random utility model to rationalize the observed choice

data when the choice frequencies of some alternatives are unobservable. Second,

through this investigation, we demonstrate the limitations of the outside option

approach. We show that by relying on the outside option approach, researchers

may not only mistakenly adopt a random utility model but also overlook valuable

information contained in the dataset. One key takeaway from these results is

that empirical researchers should use the outside option approach with caution,

making a deliberate effort to specify available alternatives in each choice set as

much as possible. By doing so, the researchers can exploit all the implications of

the random utility model. In Section 1.1, we demonstrate these points by providing

an example. In the following, we elaborate on these two objectives in order.

In this paper, we focus on a setup where the choice frequencies of some alterna-

tives are consistently missing, while those for the other alternatives are observable.

For such datasets, we derive a finite system of linear inequalities that provides

a necessary and sufficient condition for the dataset to be rationalized by a ran-

dom utility model. Furthermore, the characterization we provide is nonredundant,

meaning that none of the inequalities are implied by any others, and removing

even one of them would render the condition insufficient.4 As we explain later,

the nonredundancy of the conditions facilitates us to show the limitation of the

outside option approach.

Our necessary and sufficient condition consists of two key components. The

first is the classical nonnegativity of the Block-Marschak polynomials, a condition

that appears in Falmagne’s characterization. The second is a novel condition that

consists of inequalities involving the summation and subtraction of the Block-

Marschak polynomials. This novel condition highlights that the nonnegativity

of the Block-Marschak polynomials alone is insufficient to rationalize a dataset.

Instead, balances across the values of the Block-Marschak polynomials are crucial

4Falmagne (1978)’s characterization is also almost nonredundant. Suck (2002) and Fiorini
(2004) show that omitting just a few inequalities from Falmagne (1978) results in a nonredundant
characterization. The characterization by McFadden and Richter (1990) involves infinitely many
inequalities and entails redundancy.
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when dealing with incomplete datasets.

Our findings have significant implications for the widely used outside option

approach. We show that the outside option approach disregards all but the most

basic inequalities of the second condition. Importantly, this conclusion is made

possible by the nonredundancy of our characterization.5 In particular, our results

show that even if the dataset is not rationalizable by any random utility model, the

outside option approach may erroneously conclude that the population of agents’

choices is rationalizable by a random utility model.

To establish our results, we translate the problem into a network flow problem.

This approach was originally developed by Fiorini (2004), who provided a shorter

proof of the axiomatization of Falmagne (1978). Our methodological innovation is

employing a feasibility theorem in network flow theory, which provides a necessary

and sufficient condition for the existence of a desirable network flow. This novel tool

offers clear insights even in cases where some alternatives are missing. Moreover,

we demonstrate that our methodology not only facilitates characterization but also

significantly enhances efficiency when testing our conditions in given datasets.

To further demonstrate the limitation of the outside option approach, we ob-

tain bounds for the missing choice frequencies based on our methods and then com-

pare the bounds with the naive bounds obtained from the outside option approach.

For this purpose, we provide an efficient algorithm to derive tight bounds for the

missing choice frequencies. Our algorithm leverages the network flow structure of

the problem, offering a practical tool for further analysis. Using real datasets, we

show that our method yields significantly tighter bounds compared to the naive

bounds derived from the outside option approach. Moreover, we show that our

methods correctly capture the relative desirability of unobservable alternatives,

while the outside option approach misses that information. See Section 4 for de-

tails.

5Without nonredundancy, it could be possible, for instance, that some of inequalities in the
second condition are implied by other inequalities. With nonredundancy, each inequality in the
second condition is an independent feature of random utility rationalization. Thus we can identify
which implication (i.e., inequality) is ignored by the outside option approach.
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1.1 Motivating Example

To demonstrate the importance of analyzing datasets without relying on the outside-

option approach, we provide an example, in which the original dataset cannot be

rationalized by any random utility model, but under the outside-option approach,

the dataset appears to conform to a random utility model. Moreover, with the

outside option approach, we lose critical information about the desirability of al-

ternatives.

Let {a, b, c, d} be the set of alternatives. Suppose that we do not observe

choice frequencies of alternatives c and d. The left table in Table 1 shows the

observable choice frequencies ρ(D, x) of alternative x from D.

As mentioned, in empirical analyses, researchers often aggregate all of the un-

observable alternatives into a single outside option x0 and then consider a reduced

dataset ρ̂ in which an outside option x0 represents the set of all unobservable alter-

natives {c, d}. Thus, the right table shows the reduced dataset ρ̂. (See Definition

3.4 in Subsection 3.1 of the paper for the formal definition of the reduced dataset.)

ρ

D
x

a b c d
{a, b} 1/2 1/2 − −
{a, c} 2/3 − 1/3 −
{a, d} 2/3 + ε − − 1/3− ε
{b, c} − 1/2 1/2 −
{b, d} − 1/2 + ε − 1/2− ε
{c, d} − − ? ?
{a, b, c} 1/3 1/6 1/2 −
{a, b, d} 1/3 + ε/2 1/6 + ε/2 − 1/2− ε
{a, c, d} 1/3 − ? ?
{b, c, d} − 1/3 ? ?
{a, b, c, d} 1/6 1/6 ? ?

ρ̂

D
x

a b x0

{a, b} 1/2 1/2 −
{a, x0} 1/3 − 2/3
{b, x0} − 1/3 2/3
{a, b, x0} 1/6 1/6 2/3

Table 1: The left shows the original choice probabilities ρ(D, x) and the right
shows the reduced choice probabilities ρ̂(D, x). The rows indicate choice set D
and the columns indicate alternative x and question marks indicate unobservable
choice probabilities. We assume 0 ≤ ε ≤ 1/3.
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As the reduced dataset ρ̂ contains coarser information on the choice behavior

of consumers than ρ, our main motivation is to identify exactly what information

is lost in going from ρ to ρ̂ and then to find methods that take advantage of the

additional information available in ρ but not ρ̂. We will conclude that the reduced

dataset not only loses information about the rationalizability of ρ, but also the

relative desirabilities of all alternatives.

Given this motivation, we now turn to the example choice data in Table

1. Note first that when there is only one unobservable alternative in a choice

set, we can calculate the frequency of the unobservable alternative by subtracting

the sum of observable choice probabilities from one. (For example, ρ({a, c}, c) =
1− ρ({a, c}, a) = 1/3.)

Note also that ρ cannot be rationalized by any random utility model. In

fact, monotonicity is violated in ρ (i.e., ρ({a, c}, c)��≥ρ({a, b, c}, c))6. This violation
disappears in the reduced model ρ̂ and in fact one can verify that ρ̂ is rationalizable

by a random utility model, even though the original dataset is not.7

Additionally, in the original dataset, ρ(D, a) ≥ ρ(D, b) for all D with {a, b} ⊆
D and ρ(D ∪ a, a) ≥ ρ(D ∪ b, b) for any D such that a ̸∈ D and b /∈ D. Moreover,

these inequalities are strict when D = {c} or D = {d}. Thus it can be inferred that

a is strictly more desirable than b. However, in the reduced dataset, the desirability

of a and b is indistinguishable. Consequently, the estimated desirability of a and b

may be biased when using the outside-option approach.

Another consequence of the outside option approach is that in the reduced

dataset c and d are indistinguishable. In the original dataset, however, we can

compare choice sets with different unobservable alternatives to learn about their

relative desirability. For example, we have that ρ(D ∪ c) > ρ(D ∪ d) for all non-

emptyD such that c /∈ D and d /∈ D. We can also make inferences about the choice

6Since c is an unobservable alternative, we cannot calculate the BM polynomial with respect
to the alternative; thus the standard approach using BM polynomials cannot be applied. We
constructed this example to violate monotonicity for simplicity and in order to make it obvious
that the dataset is not RU-rationalizable. In general, non-RU rationalizability can be more
difficult to prove without using our characterizing conditions.

7The reduced dataset is rationalizable by a distribution µ such that µ(≻1) = 1/3, µ(≻2) = 1/3,
µ(≻3) = 1/6, and µ(≻4) = 1/6, where x0 ≻1 a ≻1 b, x0 ≻2 b ≻2 a, a ≻3 b ≻3 x0, and
b ≻4 a ≻4 x0.
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frequencies of c and d even when both are in the choice set. For example, suppose

we only observe the choice sets {b, c, d}, {b, c}, and {b, d}. Assuming monotonicity

of choice frequencies, we may conclude ρ({b, c, d}, c) ≤ ρ({b, c}, c) = 1/2 and

ρ({b, c, d}, d) ≤ ρ({b, d}, d) = 1/2 − ε.8. Then ρ({b, c, d}, c) = 1 − ρ({b, c, d}, b) −
ρ({b, c, d}, d) ≥ 1 − 1/3 − (1/2 − ε) = 1/6 + ε. Therefore when ε > 1/6, we have

that ρ({b, c, d}, d) ≤ 1/2 − ε < 1/3 < 1/6 + ε ≤ ρ({b, c, d}, c). We conclude that,

under monotonicity (and therefore RUM) the probability that c is chosen from

{b, c, d} is higher than the probability that d is chosen from {b, c, d}.9 All of these

conclusions suggest that c is more desirable than d, which cannot be concluded

from the reduced dataset.

This example highlights the importance of analyzing the original dataset with-

out introducing an outside option. More specifically, by identifying which alterna-

tives are available to the agent as much as possible, we can infer more information

about the agents’ preferences. In the previous example, we showed that it is possi-

ble to learn more about the relative desirability between the observable alternatives

a and b as well as the unobservable alternatives c and d simply by observing the

choice probabilities on choice sets containing some but not all unobservable alter-

natives.

These observations indicate the limitations of the outside option approach. In

this paper, we formally show the limitations of the outside option approach by first

characterizing the full implications of the random utility model when some choice

frequencies are unobservable (Theorem 3.2); and by showing what implications

of the random utility model are lost in the outside-option approach (Proposition

3.5). Moreover, in Section 4, we formalize our methods to obtain bounds of the

unobserved choice frequencies, which gives us information about desirability of the

unobservable alternatives. (See Remark 4.2 and Proposition 4.5.) In contrast, the

8Monotonicity means that ρ(E, x) ≤ ρ(D,x) for all x ∈ D ⊆ E.
9In the example of Table 1, there are only two unobservable alternatives, so we can directly

infer the choice frequency of each unobservable alternative when the choice set contains only one
unobservable alternative. However, even when there are more than two unobservable alternatives
in a choice set, we can still learn about the sum of their choice frequencies, which enables us to
compare the desirability of different unobservable alternatives. See Section 4 for further details.
In this sense, our conclusion that our methods can extract more information than the outside
option approach does not depend on there being only two unobservable alternatives in the dataset.
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outside option approach yields trivial bounds that prevent us from learning about

the relative desirability of these unobservable alternatives.

1.2 Related Literature

We now briefly discuss the related literature. It is well known that obtaining

a nonredundant characterization of the random utility model with incomplete

datasets in general is a challenging problem.10 For example, when choice frequen-

cies are observed only on binary choice sets, it has been unknown how to obtain a

nonredundant characterization of the random utility model since the 1980s; only

for the case where the number of alternatives is less than eight, the nonredundant

characterizations have been obtained.11

McFadden and Richter (1990) provide a characterization of random utility

models without assuming that all menus are observable. However, they do assume

that, for each observable menu, the choice frequencies of all alternatives in that

menu are observed; thus their approach is not applicable to our setup.12 Moreover,

our result differs from their results in that their characterization involves infinitely

many inequalities and entails redundancy, while ours consists of finite inequalities

and contains no redundant ones.13

Other than the papers mentioned so far, only a few papers have studied the

characterization of the random utility model with incomplete data. McFadden

10See Mart́ı and Reinelt (2011) for a survey. A more recent paper by Sprumont (2022) also
highlights the difficulty of this problem.

11See Reinelt (1993). This is in contrast with logit model: The logit models can be axiomatized
with binary choice sets. See Luce (2005), Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini
(2023), and Cerreia-Vioglio, Lindberg, Maccheroni, Marinacci, and Rustichini (2021) for the
axiomatization of the logit models. Recently Petri (2023) has obtained an axiomatization of a
special case of the random utility model, single-crossing random utility models introduced by
Apesteguia, Ballester, and Lu (2017) in a binary choice setup.

12More recently, Turansick (2023) provides an alternative axiomatization using the network
flow approach.

13McFadden and Richter (1990) shows that a stochastic choice function is rationalized by a
random utility model if and only if all polynomials, which we call the Mcfadden and Ricther
poliynomials in section E.3, are nonnegative. In section E.3 of the online appendix, we first
show that their characterization fails in our set up where choice frequencies of some alternatives
are not observable. Then, we generalize the result by McFadden and Richter (1990) to make
their approach applicable to our setup. However, we will explain that the Mcfadden and Ricther
polynomials contain redundancy in an essential way, unlike the Block-Marschak polynomials.
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(2006) considers a nested structure of choice sets: if choice frequencies are observ-

able in a menu D, then choice frequencies are observable in any larger set E (i.e.,

E ⊇ D). In this paper, we discuss the random utility characterization under this

restriction of available choice sets. Suck (2016) addresses the truncated complete

choice environment, in which only choice sets with at least k ≥ 2 alternatives

are observable. Nevertheless, to the best of our knowledge, our setup, in which

the choice frequencies of some alternatives are missing, is novel in the literature.

Moreover, these results are special cases of our theorem—cases in which there are

no unobservable alternatives.

As mentioned, we use the network-flow theory to prove our results. Since the

publication of Fiorini (2004), some more recent papers have used the network-flow

theory to investigate different topics on random utility models. Turansick (2022)

and Chambers and Turansick (2024) study the identification of random utility

models. Chambers, Masatlioglu, and Turansick (2021) provide a new model of

random utility with more than one agent. Doignon and Saito (2022) characterize

the adjacency of vertices and facets of a mulitiple-choice polytope (i.e., the set of

random utility models). None of these papers study incomplete datasets.

Finally, we highlight several studies that develop empirical methods for test-

ing random utility models. Kitamura and Stoye (2018) propose a nonparametric

statistical test for random utility models, focusing on datasets where choices are

made from budget sets—a setting distinct from ours. Dean, Ravindran, and Stoye

(2022) extend this framework to examine choice overload. While their methods

are applicable to a variety of choice datasets, they are computationally intensive

due to the inefficiency of the model representation they rely on. They rely on the

representation of the set of random utility models as the convex hull of vertices

(V-representation), but the number of vertices is huge. In contrast, our charac-

terization, which takes advantage of a specific structure of data incompleteness,

provides a more computationally efficient foundation for testing based on facet-

defining hyperplanes (H-representation) of the random utility model. See section

E.2 of the online appendix for a further explanation.
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2 Model

Let X be a finite set of alternatives. Let X∗ ⊆ X be the set of unobservable

alternatives. We assume that the choice frequencies of the elements of X∗ are not

observable (even if a choice set includes the alternatives). Let X̃ := X \X∗ be the

set of observable alternatives.

Let D ⊆ 2X \ ∅ be the set of choice sets. Unlike Falmagne (1978), we do not

assume that D = 2X \ ∅. Note that (D,⊆) is a partially ordered set, where ⊆ is

the set inclusion. Like McFadden (2006), we assume that D is an upper set (i.e., D
satisfies the following: D ∈ D, E ⊇ D =⇒ E ∈ D). To make our notation simple,

let M := {(D, x) ∈ D × X̃ | x ∈ D}
Note that for any (D, x), the choice frequency over (D, x) is observable if and

only if (D, x) ∈ M (i.e., x ∈ X̃ and D ∈ D).

Definition 2.1. A nonnegative vector ρ ∈ RM
+ is called an incomplete dataset if

it satisfies the following conditions: for any D ∈ D,

(i) if D ⊂ X̃, then
∑

x∈D ρ(D, x) = 1; and

(ii) if D ̸⊆ X̃, then
∑

x∈D∩X̃ ρ(D, x) ≤ 1.

When the context is clear, we will simply call ρ a dataset instead of an incom-

plete dataset. If ρ is an incomplete dataset, then ρ is not defined on (D, x) ̸∈ M.

This does not mean that we cannot know anything about the choice frequen-

cies of elements in X∗. When x∗ ∈ X∗ is the only one unobservable alternative

in the choice set D (i.e., when D ∩ X∗ = {x∗}), we can calculate ρ(D, x∗) as

ρ(D, x∗) = 1−
∑

y∈D\x∗ ρ(D, y) . 14

Definition 2.2. A nonnegative vector ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ is called a complete

dataset if, for any D ⊆ X,
∑

x∈D ρ∗(D, x) = 1.

2.1 Examples

Example 1 (Transportation): An analyst is often able to estimate the mar-

ket share of public transportation methods (i.e., bus or train) based on the rev-

enues of bus or train companies. However, it is sometimes difficult for the analyst

14We often omit braces for singletons. Here, D \ x∗ means D \ {x∗}.
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to know separately the percentages of people who drive or walk. In this case,

X = {walk, drive, bus, train}, X̃ = {bus, train} and X∗ = {walk, drive}. An

example of the set of choice sets is D =
{
{w, b, t}, {w, d, b}, {w, d, t}, {w, d, b, t}

}
,

where w, d, b, and t stand for walk, drive, bus, and train, respectively. This set D
can be obtained from the assumption that depending on the location of homes,

some transportation methods are not available.15

Example 2 (Market Shares of Private Companies): One definition of mar-

ket share is the percentage of a company’s total sales divided by the market’s

total sales. The market’s total sales can be estimated by consumer surveys. How-

ever, private companies occasionally do not disclose their financial information,

including their total sales; thus the market shares of private companies are some-

times unobservable. For example, suppose that there are four companies (i.e.,

X = {a, b, c, d}). If companies c and d are private companies, then we do not

know their sales (i.e., c, d ̸∈ X̃). Other companies {a, b} are public and the infor-

mation from these companies is disclosed. In addition, the availability of products

may vary across stores, which would give a variation of choice sets (i.e., D).

Example 3 (School Choice for Private Schools): Applicants submit their

choices among public schools so the government knows the percentage of students

choosing each public school. However, it might not have access to information on

how many students choose each private school. For example, suppose that there

are four schools (i.e., X = {a, b, c, d}). Among them, c and d are private schools

for which we do not know the choice frequencies (i.e., c, d ̸∈ X̃). The availability

of schools may depend on the location of homes, which would give a variation of

choice sets (i.e., D).
15Assuming that the analyst believes that the distribution of preferences is independent of the

location of homes, it would make sense to find a single distribution over ranking that describes
the choice frequencies across D.
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2.2 Random-Utility Rationalization

Let L be the set of linear orders on X, i.e., binary relations that are irreflexive,

asymmetric, transitive, and weakly complete.16

Definition 2.3. An incomplete dataset ρ is random-utility (RU) rationalizable if

there exists µ ∈ ∆(L) such that, for any (D, x) ∈ M, ρ(D, x) = µ( ≻∈ L | x ≻
y for all y ∈ D \ x). We then say that µ rationalizes ρ.

Definition 2.4. Let p ∈ R{(D,x)|x∈D∈2X}. For any (D, x) such that x ∈ D ⊆
X, define K(p,D, x) =

∑
E:E⊇D(−1)|E\D|p(E, x). K(p,D, x) is called a Block-

Marschak (BM) polynomial.17

Note that, given an incomplete dataset ρ ∈ RM
+ , the BM polynomialK(ρ,D, x)

can be calculated if and only if (D, x) ∈ M (i.e., x ∈ X̃ and D ∈ D). The next

remark provides a meaning of a BM polynomial given a complete dataset ρ∗:

Remark 2.5. Assuming that a complete dataset ρ∗ is RU-rationalizable, we can

provide a meaning of a BM polynomial. Suppose that there exists µ ∈ ∆(L) such

that, for any x ∈ D ⊆ X, ρ∗(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ x). By the

Möbius inversion formula, it follows that

K(ρ∗, D, x) = µ(≻∈ L|Dc ≻ x ≻ D \ x), (1)

where Dc ≻ x means that y ≻ x for all x ∈ Dc and x ≻ D \x means that x ≻ y for

all x ∈ D \ x.18 Thus, K(ρ∗, D, x) can be interpreted as a measure of population

of agents whose preference satisfies Dc ≻ x ≻ D \ x.
16A binary relation is weakly complete if, for any distinct elements x, y ∈ X, either x ≻ y or

y ≻ x.
17As we will explain below, the BM polynomial is crucial concept to characterize random utility

models. The BM polynomial appears in other contexts. For example, Brady and Rehbeck (2016)
observe that one of their axioms is equivalent to a multiplicative version of the BM polynomial.

18To see this notice that µ(≻∈ L|Dc ≻ x ≻ D \ x) = µ(
⋃

E⊇D{≻∈ L|Ec ≻ x ≻ E \ x}) =∑
E⊇D µ(≻∈ L|Ec ≻ x ≻ E \x). Thus, we have ρ∗(D,x) =

∑
E⊇D µ(≻∈ L|Ec ≻ x ≻ E \x). By

applying the Möbius inversion to this equation, we obtain µ(≻∈ L|Dc ≻ x ≻ D\x) = K(ρ∗, D, x).
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3 Main Results

Remember that X∗ := X \ X̃ is the set of unobservable alternatives. Recall that

(2X
∗
,⊆) is a partially ordered set with the set inclusion ⊆ . Consider a collection

E of subsets of X∗; we assume that E is an upper set.19

To characterize the RU-rationalizability of incomplete data, the following col-

lection of choice sets is fundamental.

Definition 3.1. A nonempty collection C of subsets of X is called a test collection

if there exists a set A ⊆ X̃ of observable alternatives and a nonempty upper set

E ⊆ 2X
∗
of unobservable alternatives such that C = {A ∪ E | E ∈ E}. Moreover,

the test collection is said to be essential if ∅ ≠ A ̸= X̃ and E ̸= 2X
∗
.

The following is our main theorem.

Theorem 3.2. (a) An incomplete dataset ρ ∈ RM
+ is RU-rationalizable if and only

if the following two conditions hold:

• (i) for any (D, x) ∈ M such that 1 < |D| < |X|, the polynomial K(ρ,D, x)

is nonnegative; and

• (ii) for any essential test collection C ⊆ D,( ∑
(D,x):D∈C,D∪x ̸∈C

K(ρ,D ∪ x, x)−
∑

(F,y):F ̸∈C,F∪y∈C,y∈X̃

K(ρ, F ∪ y, y)

)
≥ 0. (2)

(b) Moreover, the inequality conditions in (i) and (ii) are independent: for any

inequality condition in (i) or (ii), there exists an incomplete dataset ρ ∈ RM
+ that

violates the inequality but satisfies all the other conditions in (i) and (ii).20

We first make comments on statement (a) of the theorem. Recall that for any

(D, x), the BM polynomial K(ρ,D, x) is computable based on the observable data

if and only if (D, x) ∈ M. Thus, condition (i) is testable. Also, when C is a test

19Recall the property of an upper set: if D ∈ E , D ⊆ E =⇒ E ∈ E . In the example in which
X∗ = {d, e}, all upper sets in 2X

∗
are ∅, {{d, e}}, {{d, e}, {d}}, {{d, e}, {e}}, {{d, e}, {d}, {e}},

and {{d, e}, {d}, {e}, ∅}. The complement Ec is a lower set (i.e., Ec satisfies the following: E ∈
Ec, D ⊆ E =⇒ D ∈ Ec). We use the concept of lower set in the proof.

20Note that by statement (i), such ρ is not RU-rationalizable.
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collection, D ∈ C and D ∪ x /∈ C imply that x ∈ X̃.21 Thus, the first term as well

as the second term in condition (ii) can be calculated based on the available data;

so the condition (ii) is also testable.

The necessity of condition (i) in Theorem 3.2 follows from Falmagne (1978),

who shows that a complete dataset is RU-rationalizable if and only if all BM

polynomials are nonnegative.22 Novel conditions appear in (ii), which means that

the nonnegativity of the BM polynomials is insufficient for the dataset to be RU-

rationalizable because balances across the values of BM polynomials are essential

for RU-rationalizability when the dataset is incomplete. For example, one BM

polynomial being too large may not be a good sign for RU-rationalizability. In

Remark 3.3 and Subsection 3.2, we provide a further explanation of condition (ii).

As mentioned, in empirical analyses, researchers often consolidate all unob-

servable alternatives into a single alternative, often referred to as the outside option.

In Proposition 3.5 of the subsequent section, we demonstrate that the outside op-

tion approach fails to account for substantial implications of RU-rationalizability.

Specifically, it disregards all inequalities specified in condition (ii), except in in-

stances where the essential test collection is a singleton.

Statement (b) is a crucial element of Theorem 3.2; it not only provides a

necessary and sufficient condition but also ensures nonredundancy.23 This nonre-

dundancy is essential in elucidating the limitations of the outside option approach.

See the discussion after Proposition 3.5.

The nonredundancy of our conditions is in contrast to the result obtained by

McFadden and Richter (1990). As we will explain in Section E.3 of the online

appendix, the conditions in McFadden and Richter (1990) are redundant in an

essential way. Statement (b) in Theorem 3.2 may be surprising given the known

difficulty of obtaining a nonredundant characterization of the random utility model

21Since C is a test collection, C = {A ∪ E|E ∈ E} for some A ⊆ X̃ and an upper set E ⊆ 2X
∗
.

If x ∈ X∗, then D ∈ C implies D ∪ x ∈ C by the definition of test collections (especially by the
fact that E is an upper set).

22In fact, when X̃ = X (i.e., X∗ = ∅), our theorem reduces to the statement of Falmagne
(1978) and McFadden (2006), although our proof does not rely on their proofs.

23Geometrically, our theorem delineates all facet-defining inequalities of the random utility
polytope. Refer to Section E.2 in the online appendix for the polytope’s definition.
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when datasets are incomplete.

In the next remark, we provide a meaning of condition (ii) as we explained

the meaning of the BM polynomials in Remark 2.5.

Remark 3.3. Suppose that an incomplete dataset ρ is RU-rationalizable by µ. To

understand the meaning of condition (ii) in Theorem 3.2, fix a test collection C and

assume that C is a singleton set containing a set D. Since C is a test collection,

we have X∗ ⊆ D. Then, the left hand side of (2) simplifies to

∑
x∗∈X∗∩D

µ(≻∈ L|Dc ≻ x∗ ≻ D \ x∗). (3)

Thus the meaning of the condition (ii) for this case is the non-negativity of the

measure on population of agents whose preference satisfies Dc ≻ x∗ ≻ D \ x∗ for

some x∗ ∈ D ∩X∗.24

Remember that when the dataset ρ∗ is complete, we have K(ρ∗, D, x) = µ(≻∈
L | Dc ≻ x ≻ D \ {x}), as explained in Remark 2.5. This expression closely

resembles equation (3). The key difference is that the alternative x∗ is unobservable

in our setting, and we are summing over measures. This distinction arises because

we cannot compute each individual BM polynomial K(ρ,D, x∗). Nevertheless, we

still obtain a testable implication on the sum of the unobservable BM polynomials∑
x∗∈D∩X∗ K(ρ,D, x∗), which must be nonnegative. For the general expression of

condition (2), see Section E.1 in the online appendix.

3.1 Implication for the outside option approach

In this section, we first formalize the outside option approach. Subsequently, we

demonstrate that the outside option approach overlooks all inequalities in condition

(ii), except when the essential test collection is a singleton.

We first formalize the outside option approach as follows. In the outside

option approach, we represent the setX∗ of all unobservable alternatives as a single

alternative x0. Thus, the set of all alternatives in the outside option approach is

24We show this in the proof of Proposition 3.5
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defined as X̂ = X̃∪x0, where X̃ is the set of observable alternatives. Consequently,

we consider the reduced choice sets, denoted by D̂, which aggregates all elements

of X∗ into the outside option x0.
25

Definition 3.4. Let ρ̂ ∈ R
{(D,x)|x∈D∈D̂}
+ be the reduced dataset on the reduced

choice set defined as follows. We define the choice frequencies of observable alter-

natives remain the same, i.e., ρ̂(D, x) = ρ(D, x) for all x ∈ D∩ X̃, where ρ ∈ RM
+

is the original (non-reduced) incomplete dataset. Then, the choice frequency of the

outside option can be defined as ρ̂(D, x0) = 1−
∑

x∈D∩X̃ ρ(D, x).

See Table 1 in Subsection 1.1 for the example of ρ̂.

Our definition assumes that the composition of the outside option is constant

across choice sets—that is, x0 always represents the same set X∗ of unobservable

alternatives. Although this corresponds to the idealized setup often assumed in the

empirical literature, it may not hold in real datasets: in practice, the interpretation

of x0 can vary across choice sets, and this variation is typically unobservable to

the analyst. Liao, Saito, and Sandroni (2025) examines such cases by taking

the reduced dataset as the primitive of the model. That paper shows that the

implications of random utility are further weakened. The paper also found that

the case we study, where the composition of the outside option is fixed across choice

sets, represents an idealized benchmark in which the model retains relatively strong

implications. As such, our current definition serves as a natural starting point for

analyzing the limitations of the outside option approach. We show that even under

this idealized scenario, key implications of the random utility model may still be

lost.

We say that the reduced dataset ρ̂ ∈ R
{(D,x)|x∈D∈D̂}
+ is RU-rationalizable if

there exists a probability distribution µ̂ on the set L̂ of linear orders on X̂ such that

for all (D, x) such that x ∈ D ∈ D, ρ̂(D, x) = µ̂(≻̂ ∈ L̂ | x ≻̂ y for all y ∈ D \x).26

Proposition 3.5. Let ρ ∈ RM
+ be an incomplete dataset. Suppose that ρ satisfies

25We ignore the data on choice sets that contain only some (but not all) element(s) of X∗.

Formally, D̂ := {D ∈ D | D ∩X∗ = ∅} ∪ {(D \X∗) ∪ x0 | D ∈ D, D ⊇ X∗} ⊆ 2X̂ .
26In Liao, Saito, and Sandroni (2025), we refer to this as aggregated RU-rationalizability be-

cause the distribution µ̂ is defined over linear orders on X̂, in which all unobservable alternatives
in X∗ are aggregated into a single alternative x0.
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• condition (i) of Theorem 3.2 and;

• condition (ii) of Theorem 3.2 for any singleton essential test collection C ⊆
D.

Then the reduced dataset ρ̂ ∈ R
{(D,x)|x∈D∈D̂}
+ is RU-rationalizable.

To see the implication of the proposition, suppose that an original incomplete

dataset ρ violates condition (ii) of Theorem 3.2 for some non-singleton essential test

collections but satisfies all of the other conditions of Theorem 3.2. Such ρ exists be-

cause of the independence of each inequality as stated in statement (b) of Theorem

3.2. Statement (a) of Theorem 3.2 implies that ρ is not RU-rationalizable. Nev-

ertheless, Proposition 3.5 implies that the reduced dataset ρ̂ is RU-rationalizable,

thus researchers may erroneously conclude that the true data-generating process

follows the random utility model. In this way, the reduced dataset ρ̂ loses critical

implications of the original dataset ρ. In particular, Proposition 3.5 shows that

the outside option approach discards substantial implications of random utility

model—all but the most basic inequalities in condition (ii). Note that in this

interpretation, we need statement (b) of Theorem 3.2, which states that each in-

equality condition in the theorem is independent. This highlights the significance

of our nonredundancy result, particularly when contrasted with McFadden and

Richter (1990), which includes redundant conditions that preclude interpretations

like this.

Remark 3.6. To illustrate the implication of Proposition 3.5, remember the in-

complete dataset ρ in Table 1 in Subsection 1.1. Let ε = 0.

• One can observe that ρ violates condition (ii) with C = {{a, c, d}, {a, c}}:( ∑
(D,x):D∈C,D∪x ̸∈C

K(ρ,D ∪ x, x)−
∑

(F,y):F ̸∈C,F∪y∈C,y∈X̃

K(ρ, F ∪ y, y)

)
= −1

6

• Therefore, by Theorem 3.2, the original dataset ρ is not RU-rationalizable.

However, since ρ satisfies condition (i) and condition (ii) when C is a single-
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∅

Figure 1: Network Flow for the case in which X = {a, b, c, d} = X̃ and X∗ = ∅
and D = 2X \ ∅.

ton, Proposition 3.5 implies that the reduced dataset ρ̂ is RU-rationalizable,

despite the fact that the true dataset ρ is not.

In the forthcoming section (Section 3.2), we provide an intuition of our proof

of statement (a). Moving forward to Section 4, we apply the theorem to derive

insights into unobserved choice frequencies; we identify the sets of possible values

for these unobservable frequencies. This section further illustrates the limitations

of the outside option approach. In Section 5, we provide concluding remarks on

the comparison between the outside option approach and our approach.

3.2 Intuition of the proof

In this subsection, we outline the proof of statement (a) of Theorem 3.2. All formal

proofs and the proof of statement (b) are in the appendix.

3.2.1 Network Flow for complete dataset

Before providing the sketch of our proof, we provide an overview of the network flow

approach used by Fiorini (2004) for a complete dataset ρ∗. Recall that a network

is a pair of a node set N and a set of directed arcs (i.e., edges) A ⊆ N ×N . Two

nodes s (source) and t (terminal) play special roles as explained below. We set

N = 2X ,A = {(D,D ∪ x) | D ⊆ X, x ̸∈ D}, s = ∅, and t = X. See Figure 1 for an
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example. In the setup, each ∅ −X directed path corresponds to a unique ranking

≻. For example in Figure 1, the directed path ∅ − {a} − {a, b} − {a, b, c} − X

corresponds to the ranking: d ≻ c ≻ b ≻ a.

We now construct a vector (i.e., flow) r ∈ R
{(D,D∪x)|x∈D∈2X}
+ on the network

assuming that a complete dataset ρ∗ is RU-rationalizable by some µ ∈ ∆(L), or

ρ∗(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ x) for all (D, x) s.t. x ∈ D ⊆ X. (4)

To each arc of the network, we assign the sum of the values of µ(≻) over linear

orders ≻ such that the directed path corresponding to ≻ goes through the arc.

Given the construction, the value at an arc (D \ x,D) is µ({≻∈ L | Dc ≻ x ≻
D \ x}).27 By the Möbius inversion formula, as explained in Remark 2.5, this

value equals to K(ρ,D, x). Note the constructed flow r satisfies all the following

constraints:

∑
x∈X

r(X \ x,X) = 1, (5)∑
x∈D

r(D \ x,D) =
∑
y ̸∈D

r(D,D ∪ y) for any D ∈ 2X s.t. 1 ≤ |D| ≤ |X| − 1, (6)

r(D \ x,D) = K(ρ∗, D, x) for all (D, x) such that x ∈ D ∈ 2X . (7)

Condition (5) means that the sum of inflows to X (i.e. flows going into X)

must be 1; the condition (6) means that for each node D, the sum of inflows to the

nodeD equals to the sum of outflows fromD (i.e. flows coming out fromD); finally

condition (7) means that the value of flow at an arc equals to the corresponding

value of the BM polynomial.

The above observation shows that the three conditions are necessary for ρ∗ to

be RU-rationalizable. Fiorini (2004) proved that the conditions are also sufficient.

27To see this, note that ≻ passes through the arc (D\x,D) if and only if x is ranked just above
the elements of D \x. That is, ≻ passes through the arc (D \x,D) if and only if Dc ≻ x ≻ D \x.
For example, the the path corresponding to ≻ passes through the arc (∅, {a}) if and only if a is
the worst element under ≻. Therefore the value assigned to the arc is equal to a measure over
rankings whose worst elements are a.
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Lemma 3.7 (Fiorini (2004)). Given a complete dataset ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ , there

exists µ ∈ ∆(L) satisfying (4) if and only if there exists r ∈ R
{(D\x,D)|x∈D∈2X}
+

satisfying (5), (6) and (7).

It can be shown from the definition of the BM polynomial that (5) and (6)

are satisfied automatically under the assumption of (7). Thus this implies the

following:

Theorem (Falmagne (1978)). Given a complete dataset ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ ,

there exists µ ∈ ∆(L) satisfying (4) if and only if K(ρ∗, D, x) ≥ 0 for all (D, x)

such that x ∈ D ∈ 2X .

3.2.2 Network flow for incomplete dataset

Now let’s consider the case in which the dataset is incomplete. Remember in this

case that K(ρ,D, x) can be calculated if and only if (D, x) ∈ M. We say an

arc (D \ x,D) is observable if (D, x) ∈ M (and hence we can calculate the value

K(ρ,D, x) of a flow at the arc); (D \ x,D) is unobservable if (D, x) ̸∈ M (and

hence we cannot calculate the value K(ρ,D, x) of a flow at the arc). See Figure 2,

for the illustration.

We extend the result by Fiorini (2004) to incorporate the case of incomplete

datasets as follows:

Lemma 3.8. Given an incomplete dataset ρ ∈ RM
+ ,

(P1) there exits µ ∈ ∆(L) such that

ρ(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ x) for any (D, x) ∈ M (8)

if and only if

(P2) there exits r ∈ R
{(D\x,D)|x∈D∈2X}
+ satisfying (5), (6), and

r(D \ x,D) = K(ρ,D, x) for all (D, x) ∈ M. (9)

Note that unlike the case of complete data, Fiorini’s approach (i.e., map-

ping the RU-rationalizability problem into a network flow) does not provide direct
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Figure 2: Network Flow for the case in which X = {a, b, c, d}, X̃ = {a, b}, and
X∗ = {c, d} and D = 2X \ ∅. The solid arrows correspond to observable arcs: the
dotted arrows correspond to unobservable arcs.

testable conditions without existential quantifiers.

In the following, we translate (P2) to conditions without existential quanti-

fiers. To provide an intuition on how to do so, consider Figure 3 in which X =

{a, b, c, d}, X̃ = {a, b},X∗ = {c, d}, andD = 2X\∅. Let C = {{a, c}, {a, d}, {a, c, d}}.
In the figure, red flows are observable outflows from C; yellow flows are unobserv-

able inflows to C; blue flows are observable inflows to C. Note that there are no

unobservable outflows.

By the equality between inflows and outflows with respect to C, we have that
the sum of red outflows equals to the sum of yellow inflows and the sum of the

blue inflows.28 Although each yellow inflow is unobservable, we can calculate the

sum of yellow inflows as the sum of red outflows minus the sum of blue inflows.

If ρ is RU-rationalizable then the sum of yellow inflows is nonnegative, and hence

the sum of red outflows minus the sum of blue inflows must be nonnegative. This

is an implication that is directly testable based on the observable dataset since we

can calculate the value of blue inflows and red outflows.

To generalize this idea, we introduce one definition:

28Note also that the values of red outflows and blue inflows can be calculated based on ob-
servable dataset as follows: (Red outflows)=

∑
(D,x):D∈C,D∪x ̸∈C,(D∪x,x)∈M K(ρ,D ∪ x, x); (Blue

inflows)=
∑

(E,y):E ̸∈C,E∪y∈C,(E∪y,y)∈M K(ρ,E ∪ y, y).
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Figure 3: Outflows from C ≡ {{a, c}, {a, d}, {a, c, d}} and inflows to C.
Note: Red flows are observable outflows from C; yellow flows are unobservable inflows to C; blue
flows are observable inflows to C. Note that green flows are flows contained in C and are not

relevant to the value of δρ(C), which is the net observable outflow from C.

Definition 3.9. A collection C ⊆ 2X is said to be complete if D ∈ C =⇒ ∀x ∈
X∗, D ∪ x ∈ C.

Note that a collection C of subsets is complete if and only if there are no unob-

servable outflows from C. In the example above, C = {{a, c}, {a, d}, {a, c, d}} is

complete, and hence there are no unobservable outflows from C.
We need one more definition: for any C ⊆ 2X , define

δρ(C) =

 ∑
(D,x):D∈C,D∪x̸∈C,

(D∪x,x)∈M

K(ρ,D ∪ x, x)−
∑

(E,y):E ̸∈C,E∪y∈C,
(E∪y,y)∈M

K(ρ, E ∪ y, y)


+1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}. (10)

For any C ⊆ 2X , δρ(C) is the net observable outflows from C. To see this notice

that the first term is the values of the observable outflows from C and the sec-

ond term is the values of the observable inflows to C.29 In the example above,

29The function δ can also be defined with D = 2X \ ∅ and X∗ ̸= ∅ as follows: for any complete

dataset ρ∗, define δρ∗(C) =
(∑

(D,x)
D∈C,D∪x ̸∈C

K(ρ∗, D ∪ x, x)−
∑

(E,y)
E ̸∈C,E∪y∈C

K(ρ∗, E ∪ y, y)

)
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δρ(C) equals to the sum of red outflows minus the sum of blue inflows when

C = {{a, c}, {a, d}, {a, c, d}}.
Based on the discussion above, if a solution to (P2) exists, then δρ(C) ≥ 0 for

any complete collection C. The next proposition shows the converse also holds:

Proposition 3.10. Given an incomplete dataset ρ ∈ RM
+ , a solution to (P2) exists

if and only if δρ(C) ≥ 0 for any complete collection C such that ∅ ̸∈ C.

We provide a proof of proposition in the appendix by using the maximum-flow

theorem from Ford Jr and Fulkerson (2015). The condition given in Proposition

3.10 uses only the observable choice data to characterize a solution to (P2) since

the value (10) of δρ depend only on the values of ρ on M; moreover the condition

does not contain existential quantifiers.

Although Proposition 3.10 together with Lemma 3.5 successfully character-

izes RU-rationalizability based only on the available data, the condition has some

redundancy. The next corollary provides a nonredundant characterization, which

proves statement (a) of Theorem 3.2.

Corollary 3.11. Given an incomplete dataset ρ ∈ RM
+ , a solution to (P2) exists

if and only if (i) K(ρ,D, x) ≥ 0 for all (D, x) ∈ M such that 1 < |D| < |X| and
(ii) δρ(C) ≥ 0 for any essential test collection C ⊆ D.

In the appendix, we provide a proof of statement (b), which claims the nonre-

dundancy of conditions appear in (i) and (ii). This proof is the most intricate part

of our proofs.

4 Bounds for Unobservable Choice Probabilities

In this section we obtain bounds for unobservable choice probabilities. In practice,

predicting unobservable choice probabilities is important. Recall, for instance, the

transportation example (Example 1) in Section 2.1. In this example, how people

commute is not observable unless they use public transportation. That is, X =

{bus, train, walk, drive}, X̃ = {bus, train}, and X∗ = {walk, drive}. (Remember

+ 1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}. We will use this definition later.
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that X̃ is the set of observable alternatives and X∗ is the set of unobservable

alternatives.) Suppose that the government is considering introducing a new tax

on gasoline to encourage people to commute by public transportation. To assess

the potential impact of the new policy, it is crucial for the government to know

the percentage of people who commute by private cars.

The most naive approach is merely to bound the fraction below by zero and

above by the percentage of people who did not use public transportation. In

Remark 4.1, we will observe that this naive approach corresponds to the outside

option approach. The main purpose of this section is to show that specifying the

available alternatives as precisely as possible in each choice set allows us to improve

the bounds, assuming the random utility model. We first demonstrate this with

only the monotonicity condition in Section 4.1. Then in Section 4.2, we further

improve the bounds by using the full implication of the random utility model.

Finally, in Section 4.3, we apply both the naive approach and our proposed

approach to a dataset from McCausland, Davis-Stober, Marley, Park, and Brown

(2020).30 We compare the resulting bounds to highlight the differences between

the outside option approach and our method, thereby demonstrating the practical

significance of our approach.

We first obtain the implication of the outside option approach.

Remark 4.1. Let ρ ∈ RM
+ be a given incomplete dataset. Let ρ̂ ∈ R

{(D,x)|x∈D∈D̂}
+

be the reduced dataset in the outside option approach defined in Definition 3.4.

Choose any (D, x∗) such that D ∈ D, X∗ ⊆ D, and x∗ ∈ X∗. The bounds for

the unobservable choice frequency x∗ from D derived from the restriction that ρ̂ is

RU-rationalizable are [
0, 1−

∑
a∈D∩X̃

ρ(D, a)
]
. (11)

To see this, notice that every menu in the reduced dataset D̂ either contains

all or none of the unobservable alternatives. Therefore, there is no way to distin-

guish any unobservable alternative from another. Thus, with the outside option

approach, RU-rationalizability does not have any implications beyond the fact that

30The dataset is available on the journal’s website.
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the probabilities must sum up to 1.

4.1 Bounds derived from Monotonicity

In this section, we focus exclusively on the monotonicity condition, which requires

that the choice frequency of an alternative from a given choice set does not increase

when an additional alternative is added to the set. The purpose of this section is

to provide an intuitive explanation on how specifying the available alternatives as

precisely as possible in each choice set allows us to improve the bounds.

Fix D ∈ D that contains some unobservable alternative x∗ ∈ X∗. We will

obtain the bound for the choice frequency of x∗ from choice set D. The basic idea

is that by comparing the choice probabilities on the choice sets D and D \ y∗ for

each y∗ ∈ D ∩X∗, we can learn about the relative desirability of each alternative

y∗ ∈ D ∩X∗.

Remark 4.2. Let ρ∗ be a complete dataset that coincides with ρ on M and satisfies

monotonicity. Define F ≡ {y∗ ∈ D ∩X∗|D \ y∗ ∈ D}. For any (D, x∗) such that

x∗ ∈ D∩X∗ and D ∈ D, the bounds for the unobservable choice frequency ρ∗(D, x∗)

become [
L(x∗), 1−

∑
a∈D∩X̃

ρ(D, a)−
∑

y∗∈(D∩X∗)\x∗

L(y∗)
]
, (12)

where

L(y∗) =


∑

a∈D∩X̃
(
ρ(D \ y∗, a)− ρ(D, a)

)
for all y∗ ∈ F,

0 otherwise.31
(13)

The lower bound L(x∗) shows that the larger the difference between ρ(D, ·) and

ρ(D \x∗, ·) is, the more desirable x∗ is. These bounds (12) are useful as they allow

us to compare the relative desirability of unobservable alternatives.32

31Note that if ρ is not RU-rationalizable, it is possible that L(x∗) > 1 −
∑

a∈D∩X̃ ρ(D, a) −∑
y∗∈(D∩X∗)\x∗ L(y∗) which we may interpret as an empty set.
32When D only contains menus of the form D and D \ y∗ for y∗ ∈ X∗ for some D ⊆ X, these

bounds are actually tight. That is, they coincide with the RUM bounds derived in the next
section. However, when the choice frequencies for other menus are available, monotonicity and
RUM have further implications.

25



By comparing the bounds (12) and the bounds (11) from the outside option

approach obtained in Remark 4.1, the improvement of the bounds can be simply

summarized as ∑
y∗∈D∩X∗

L(y∗).

Since L(y∗) is the difference between ρ(D, ·) and ρ(D \ y∗, ·), we may interpret∑
y∗∈D∩X∗ L(y∗) as the total difference between the outside option approach and

our approach.

To see how to obtain the result, first notice that the upper bounds can be

obtained easily given the lower bounds.33 To get the lower bounds assume that

x∗ ∈ F . Then, by monotonicity, we have ρ∗(D, y∗) ≤ ρ∗(D \ x∗, y∗) for all y∗ ∈
X∗\x∗. Thus we have ρ∗(D, x∗)+

∑
a∈D∩X̃ ρ(D, a) = 1−

∑
y∗∈(D∩X∗)\x∗ ρ∗(D, y∗) ≥

1−
∑

y∗∈(D∩X∗)\x∗ ρ∗(D\x∗, y∗) =
∑

a∈D∩X̃ ρ(D\x∗, a). It follows that ρ∗(D, x∗) ≥∑
a∈D∩X̃

[
ρ(D \ x∗, a)− ρ(D, a)

]
≡ L(x∗).

In the next remark, we demonstrate how to calculate the bounds by using

example in Table 1 in Section 1.1

Remark 4.3. We will obtain bounds of unobservable choice frequencies from the

choice set {b, c, d}. In the dataset ρ in Table 1, we observe ρ({b, d}, b) = 1/2 +

ε, ρ({b, c}, b) = 1/2, and ρ({b, c, d}, b) = 1/3 as alternative b is observable. From

these we can calculate the lower bounds L(c) and L(d) as follows:

L(c) = ρ({b, d}, b)− ρ({b, c, d}, b) = 1/2 + ε− 1/3 = 1/6 + ε,

L(d) = ρ({b, c}, b)− ρ({b, c, d}, b) = 1/2− 1/3 = 1/6.

Thus, we also can obtain upper bounds for alternative c and d as 1−ρ({b, c, d}, b)−
L(d) = 1/2 and 1 − ρ(bcd, b) − L(d) = 1/2 − ε, respectively. Thus, as observed

in the introduction, the bounds for alternative c are [1/6 + ε, 1/2]; the bounds for

alternative d are [1/6, 1/2− ε].

33Suppose that we obtain the lower bound L(y∗) for all y∗ ∈ D ∩ X∗. To get the upper
bound, simply subtract the lower bounds from 1 to obtain ρ∗(D, y∗) ≤ 1 −

∑
a∈D∩X̃ ρ(D, a) −∑

y∗∈D∩(X∗\x∗) L(y
∗).
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When ε ≥ 1/6, observe that the bounds for alternative c locate higher than

the bounds for alternative d, which suggests that alternative c is more desirable to

alternative d. Thus remark 4.2 generalizes the analysis done in Section 1.1.

4.2 Bounds derived from RU rationality

In this section, we further improve the bounds by assuming full RU rationality

based on our characterization.

Let ρ ∈ RM
+ be a given incomplete dataset.

Definition 4.4. Assume that ρ is RU-rationalizable. A complete dataset ρ∗ ∈
R

{(D,x)|x∈D∈2X}
+ is said to be RU-consistent with ρ if it satisfies the followings

(i) ρ = ρ∗ on M; and

(ii) there exists µ ∈ ∆(L) such that for any (D, x) with x ∈ D ∈ 2X , ρ∗(D, x) =

µ(≻∈ L | x ≻ y for all y ∈ D \ x).

Let Γ be the set of complete datasets ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ that are RU-

consistent with the given incomplete dataset ρ. Remember that ρ(D, x) is defined

(i.e., observable) if and only if (D, x) ∈ M. With (D, x) ̸∈ M fixed, the goal in

this section is to obtain bounds of ρ∗(D, x) for some ρ∗ ∈ Γ. As is pointed out

in page 1399 of Manski (2007), since Γ is convex and conditions (i) and (ii) are

linear, the identified set is an interval with the upper and lower bounds given by

ρ(D, x) ≡ maxρ∗∈Γ ρ
∗(D, x) and ρ(D, x) ≡ minρ∗∈Γ ρ

∗(D, x), respectively.

Based on the idea of (P1) in Section 3.2, Γ can be written as{
ρ∗ ∈ R

{(D,x)|x∈D∈2X}
+

∣∣∣∣ There exists µ ∈ ∆(L) satisfying
the conditions (i) and (ii) in Definition 4.4

}
(14)

The formulation (14) is closely related to (P1): it can be shown that if µ satisfies

the conditions (i) and (ii), it is a solution to (P1). To obtain the next proposition,

we rewrite Γ in the spirit of (P2) exploiting the network flow structure.
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Proposition 4.5. For any (D, x) ̸∈ M, the upper bound is obtained by

ρ(D, x) = max
r∈R{(D,x)|x∈D∈2X}

+

∑
E:E⊇D

r(E \ x,E) (15)

subject to the following constraint: for all D ⊆ X,

∑
(D,y)̸∈M:y∈D

r(D \ y,D)−
∑

(D∪y,y) ̸∈M:y/∈D

r(D,D ∪ y) = δρ(D), (16)

where r(E \ x,E) = K(ρ, E, x) for all (E, x) ∈ M, and δρ(·) is defined by (10).

The lower bound ρ(D, x) solves a similar problem with a min replacing the max.

See subsection C.2 in the appendix for the proof. Compared with the original

formulation (14) based on (P1), our bounds in Proposition 4.5 is computationally

more efficient. This is because this problem can be seen as a minimum-cost trans-

shipment problem, which is well known in the network-flow theory literature.34

One of the key properties of this problem is that it is a linear program with a con-

straint that has an incidence matrix as its coefficient.35 For this specific problem,

a practical polynomial time algorithm, called the network simplex algorithm, can

be applied.36 When D = 2X \∅, the bound (15) can be further simplified as shown

in online appendix E.5.

Kitamura and Stoye (2019) also consider bounds of counterfactual choice prob-

abilities based on the formulation of Kitamura and Stoye (2018). Theoretically,

their bounds coincide with (15) in our setup, but it is possible that the bounds

are much harder to compute than our bounds. This is because they compute the

bounds directly from (P1), or equivalently (14), ignoring the network structure.

Since the network simplex algorithm relies heavily on the fact that the constraint

of the linear program is written with an incidence matrix, the original form (P1)

does not have its benefit in terms of computational efficiency.

34See, for example, Ahuja, Magnanti, and Orlin (1988) and Ford Jr and Fulkerson (2015).
35An incidence matrix is a matrix representation of network structure, which is defined as a

matrix consisting only of 0, 1 and −1 with each column having exactly one element of 1 and −1.
36We refer readers to Orlin, Plotkin, and Tardos (1993) and Orlin (1997) for further computa-

tional aspects of the algorithm.
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4.3 Application to Lottery Data

We now apply the methods developed in the the previous sections to a stochastic-

choice dataset from the experiment conducted by McCausland, Davis-Stober, Mar-

ley, Park, and Brown (2020). In the experiment, the authors fixed a set X =

{0, 1, 2, 3, 4} of five lotteries and asked 141 participants to choose one from each

subset of X. Each participant made decision six times for each choice set. See

McCausland, Davis-Stober, Marley, Park, and Brown (2020) for further details.

We aggregate these choice frequencies to construct a complete dataset denoted by

ρ.

The lottery dataset is nearly RU-rationalizable but not exactly. As our

method can be applied only to RU-rationalizable datasets, we first fit a random

utility model to the dataset to get a calibrated dataset that is close to the original

one and is RU-rationalizable.37 The detail of this procedure is in subsection E.8

of the online appendix. We mask the choice probabilities of lotteries 0 and 1 and

pretend not to observe them; in other words, we set X∗ = {0, 1}, X̃ = {2, 3, 4},
and D = 2X \ ∅.

Under this setup, we will compute three types of bounds on the probabilities

of lotteries 0 and 1 being chosen in a given choice setD that contains both lotteries.

The first type of bounds is (11) based on the outside option approach:
[
0, 1−∑

x∈D∩{2,3,4} ρ(D, x)
]
. Note that the bounds for lotteries 0 and 1 are identical, as

the outside option approach provides no information to distinguish among unob-

servable alternatives. The bounds are shown in blue dotted interval in Figure 4.

We call these bounds naive bounds.

The second type of bounds is derived from the monotonicity condition ob-

tained in Remark 4.2. As demonstrated in Remark 4.3, the bounds can be calcu-

lated easily given the dataset ρ.

The third and the last type of bounds is the one that exploits full implication

of RUM and is computed by the linear program (15).38 These bounds are shown

37The monotonicity bounds can be applied to the original dataset, although as mentioned in
footnote 31 if the data deviates too much from RUM the bounds may become empty.

38In the dataset, we have D = 2X \ ∅. Under this setup, we can further simplify the bound
(15) into (35), as shown in the online appendix E.5. We use (35) to calculate the values.
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in red for alternative 0 and in green for alternative 1 in Figure 4. We call these

bounds RUM bounds.

Figure 4: Comparison between the bounds of the choice probabilities of lotteries
0 and 1. The RUM bounds for 0 and 1 are shown in red and green, respectively.
The monotonicity bounds for 0 and 1 are show in purple and yellow, respectively.
The naive bounds for both are shown in blue.

There are two key takeaways from the figure. First, our bounds (i.e., the RUM

bounds and the monotonicity bounds) are substantially tighter than the native

bounds, particularly when the choice set is large. While the RUM bounds are

slightly narrower than the monotonicity bounds, the two are quite similar except

for the choice set {0, 1}.39 This suggests that our methods effectively leverage

additional information about unobserved choice frequencies. In particular, for

the choice set {0, 1, 2, 3, 4}, the RUM bounds and the monotonicity bounds are

39While the given monotonicity bounds for {0, 1} are not close to the RUM bounds, this is
only because the bounds derived in remark 4.2 use monotonicity in a simple way to aid the
exposition. Indeed as mentioned in footnote 32, since there are additional menus beyond {0, 1},
{0}, and {1}, monotonicity has further implications beyond the given bounds. If these are taken
into account, the monotonicity bound becomes very close to the RUM bound even on {0, 1}.
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extremely tight and closely approximate the true values.

Second, and more importantly, in the RUM bounds for the choice frequency

of the alternative 1 are always higher than those of alternative 0. Therefore, we

can conclude that in any RU-rationalization, the probability that alternative 1

is chosen is higher than the probability that alternative 0 is chosen in all menus

but D = {0, 1}. A similar conclusion can be made for the monotonicity bounds.

On the other hand, in the outside option approach, the bounds for alternatives

1 and 0 are exactly identical. This difference indicates that our method exploits

the information that alternative 1 is better than alternative 0, while the outside

option approach loses this information completely. This observation suggests that

the estimation of the desirability of unobserved alternatives would be biased in the

outside option approach, though it is beyond the scope of the current paper.

5 Concluding Remark

In this paper, we formally demonstrate the limitations of the outside option ap-

proach. We begin by characterizing the full implications of the random utility

model when some choice frequencies are unobservable (Theorem 3.2), and then

identify which implications are lost under the outside option approach (Proposi-

tion 3.5). Furthermore, in Remark 4.2 and Proposition 4.5, we develop methods

to bound the unobserved choice frequencies, revealing information about the desir-

ability of unobservable alternatives. This information is entirely lost in the outside

option approach, as all unobservable alternatives are aggregated into a single al-

ternative in that approach. Taken together, these results underscore the value of

accurately identifying the set of alternatives available to each agent. In a trans-

portation context, for example, measuring access to train or bus stations can help

determine which options are available to a commuter, enabling a more reliable

inference of their preferences.
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Appendix

A Proof of Statement (a) of Theorem 3.2

A.1 Proof of Lemma 3.8

We first prove that (P1) implies (P2). Fix a solution µ to (P1). Define a complete

dataset ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ by ρ∗(D, x) = µ({≻∈ L | x ≻ y for all y ∈ D \ x})

for all x ∈ D ∈ 2X . Then ρ∗ = ρ on M. Moreover, by Lemma , we have r ∈
R

{(D\x,D)|x∈D∈2X}
+ that satisfies (5), (6) and r(D \x,D) = K(ρ∗, D, x) for all (D, x)

such that x ∈ D ∈ 2X . Since ρ∗ = ρ on M, thus we have r(D \ x,D) = K(ρ,D, x)

for all (D, x) ∈ M. Thus, r is a solution to (P2).

Next we prove that (P2) implies (P1). Fix a solution r to (P2). For any

(D, x) ̸∈ M, ρ∗(D, x) ≡
∑

E:E⊇D r(E \ x,E). Then ρ∗ = ρ on M, where ρ is the

given incomplete dataset. Thus, we obtain a complete dataset ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ .

Then by the Möbius inversion, we have r(D \ x,D) = K(ρ∗, D, x) for all (D, x)

such that x ∈ D ∈ 2X . Then r satisfies (5), (6), and (7). Then by Lemma , there

exists µ ∈ ∆(L) such that ρ∗(D, x) = µ({≻∈ L | x ≻ y for all y ∈ D \ x}) for all
(D, x) such that x ∈ D ∈ 2X . Since ρ = ρ∗ on M, (4) holds for any (D, x) ∈ M.

Thus, µ is a solution to (P1).

A.2 Proof of Proposition 3.10

A.2.1 Lemma

Fix a network (N ,A). Remember that N is the set of nodes; A is the set of

arcs. Consider a function r : A → R. For any node D ∈ N , let r(D,N ) ≡∑
E∈N r(D,E); r(N , D) ≡

∑
E∈N r(E,D)40. A function r : A → R is called a

flow on a network (N ,A) if it satisfies the following conditions:

r(s,N )− r(N , s) = 1, (17)

r(D,N )− r(N , D) = 0 ∀D ∈ N \ {s, t}, (18)

r(N , t)− r(t,N ) = 1. (19)

40We define r(D,N ) = 0 if (D,E) ̸∈ A for any E ∈ N ; Similarly, r(N , D) = 0 if (E,D) ̸∈ A
for any E ∈ N .
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r(D,N ) is the sum of outflows from D; r(N , D) is the sum of inflows to D. Thus

(17) means the net outflow from s is one; (18) means the inflows equal to the

outflows at each node D ̸∈ {s, t}; (19) means the net inflows to t is one.

The following lemma provides a necessary and sufficient condition for the

existence of a nonnegative flow satisfying some capacity constraints. For each arc

(D,E), let l(D,E) and u(D,E) be exogenously given lower and upper bounds of

the flow r(D,E) of the arc. We prove the result using the maximum-flow theorem

from Ford Jr and Fulkerson (2015). We provide the proof in section A.1 of the

online appendix.41

Lemma A.1. Let l, u : A → R+ be such that l(D,E) ≤ u(D,E) for (D,E) ∈ A.

There exists a flow r : A → R+ such that

l(D,E) ≤ r(D,E) ≤ u(D,E) ∀(D,E) ∈ A (20)

if and only if the following condition holds for all C ⊆ N

∑
(D,E)∈C×Cc

u(D,E)−
∑

(D,E)∈Cc×C

l(D,E) ≥


1 if t ̸∈ C, s ∈ C,
−1 if t ∈ C, s ̸∈ C,
0 otherwise.

(21)

To interpret condition (21), remember that for any collection C ⊆ N , r(D,E)

is called an outflow from C if D ∈ C and E ̸∈ C; r(D,E) is called an inflow to C
if D ̸∈ C and E ∈ C. Thus the left-hand side is the sum of the upper bounds of

outflows from C minus the sum of the lower bounds of inflows to C.42 On the other

hand, the right-hand side is the net outflow from C.
41We appreciate prof. Ui who pointed out a similar result appears in Rockafellar (1998).
42In network-flow theory, this value is called residual capacity of a cut (C, Cc).
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A.2.2 Main proof of Proposition 3.10

To apply the lemma to our setup, let

N = 2X , A = {(D,D ∪ x) | D ⊆ X, x ̸∈ D}, s = ∅, t = X,

l(D,D ∪ x) = u(D,D ∪ x) = K(ρ,D ∪ x, x) if (D ∪ x, x) ∈ M,

l(D,D ∪ x) = 0 and u(D,D ∪ x) = +∞ if (D ∪ x, x) ̸∈ M.

(22)

Under the setup (22), there exists a solution r to (P2) ⇔ there exists a flow

r that satisfies the conditions in Lemma A.1 ⇔ the condition (21) holds for any

C ⊆ N , where the first equivalence holds by the setup and the second equivalence

holds by Lemma A.1. Thus, to show the proposition, it suffices to prove that the

condition (21) holds for any C ⊆ N if and only if δρ(C) ≥ 0 for any complete

collection C such that ∅ ̸∈ C.
Step 1: Suppose that (21) holds for any Ĉ ⊆ N . For any C ⊆ N such that all

outflow from C is observable, then δρ(C) ≥ 0.

Proof. Fix any C ⊆ N . Note that

∑
(D,E)∈Cc×C

l(D,E) =
∑

(E,y):E ̸∈C,E∪y∈C,(E∪y,y)∈M

K(ρ, E ∪ y, y).

Assume that any outflow from C is observable. Then u does not take the value of

+∞. Thus we have

∑
(D,E)∈C×Cc

u(D,E) =
∑

(D,x):D∈C,D∪x ̸∈C,(D∪x,x)∈M

K(ρ,D ∪ x, x).

Thus the left-hand side minus the right-hand side of (21) equals to the value of

δρ(C). By the suppostion of the statement that (21) holds for any Ĉ ⊂ N , we have

δρ(C) ≥ 0. ■

We use Step 1 to prove the following:

Step 2: If the condition (21) holds for any Ĉ ⊆ N , then δρ(C) ≥ 0 for any complete

collection C ⊆ N such that ∅ ̸∈ C.
Proof. Fix any complete collection C ⊆ N such that ∅ ̸∈ C. By the disjoint
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additivity, we have δρ(C) = δρ(C ∩ D) + δρ(C \ D).

Since D is an upper set and C is complete, there are no unobservable outflows

from C ∩ D. Thus by the supposition of this step, it follows from Step 1 that

δρ(C ∩ D) ≥ 0.

Since ∅ /∈ C \ D and C \ D has no observable inflows, by the definition of δρ,

there are no negative terms in δρ(C \ D). Thus, we have δρ(C \ D) ≥ 0. It follows

that δρ(C) ≥ 0. ■

Step 2 proves one way of the proposition. In the following, we show the other

way.

Step 3: If δρ(Ĉ) ≥ 0 for any complete collection Ĉ ⊆ N such that ∅ ̸∈ Ĉ, then the

condition (21) holds for any C ⊆ N .

Proof. Fix any C ⊆ N . If C has an unobservable outflow, then the left-hand side

of (21) becomes infinite and (21) holds as desired. In the following consider the

case where C has no unobservable outflows (i.e., all outflows are observable), which

implies C is complete. As in the proof of Step 1, this implies that the left-hand

side minus the right-hand side of (21) equals to δρ(C).
If ∅ ̸∈ C, by the supposition of this step, δρ(C) ≥ 0 because C is complete.

Thus, (21) holds.

Assume ∅ ∈ C in the following. Since C is complete, 2X
∗ ⊆ C. Remember,

by the assumption of the case, there exist no unobservable arcs (D,D∪ x) coming

out from C. This means that any arc (D,D ∪ x) coming out from C is observable.

Thus, we have D ∪ x ∈ D. Since D ∪ x ̸∈ C, by the completeness of C, we have

x ̸∈ X∗.

Now we build a certain subset of C inductively: initialize G0 = 2X
∗
. At the

first step, take all of the unobservable flows coming out of G0. The collection G0 is

complete so all of these flows are going to a node of Dc (because we are considering

unobservable flows). Call the set of all these nodes F0 ⊆ Dc. Since each of these

nodes is in Dc, all of their subsets are also in Dc because Dc is a lower set.43 In

particular, for each F ∈ F0 we have F \X∗ ∈ Dc.

43Remember that a lower set satisfies the following: E ∈ Dc =⇒ D ∈ Dc for all E ⊇ D.
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Notice also that there is an arc from G0 to F \ X∗.44 So we conclude that

F \ X∗ ∈ C (otherwise it contradicts with the fact that all outflows from C are

observable). By the completeness of C, we have {(F \X∗) ∪ E : E ∈ 2X
∗} ⊆ C.

Define H0 =
⋃

F∈F0
{(F \X∗) ∪ E : E ∈ 2X

∗}. Now define G1 = G0 ∪ H0. At

the nth step, define Hn−1 in the same way as H0 and let Gn = Gn−1 ∪Hn−1. Since

2X is finite, at some step n the set Gn will have no unobservable outflows. Call

this terminal collection G.
The collection G has no unobservable outflows and contains ∅ by its construc-

tion. It is straightforward to show that G has no inflows, which implies G is a

lower set. To see why, suppose that (D,D ∪ x) ∈ Gc × G. Since D ̸∈ G, by the

construction of G, we have D \X∗ /∈ G. Since D∪x ∈ G we have (D∪x)\X∗ ∈ Dc

by the construction of G again. It follows from that D \ X∗ and all subsets of

D \X∗ belong to Dc.45 Since ∅ ∈ G there must be an arc from G to a subset E of

D \ X∗, where E ̸∈ G. Since E ̸̸∈ D, this means G has an unobservable outflow,

which is impossible by its construction.

Since (i) all the outflows from G are observable; (ii) there are no observable

inflows to G; (iii) and ∅ ∈ G, therefore we conclude that δρ(G) = 0.

Note that C \ G = C ∩ Gc is complete because G is a lower set (in particular

Gc is an upper set and thus is complete) and the intersection of complete sets is

complete. Since ∅ ∈ G, C \ G does not contain ∅. It follows from the supposition

of the step that δρ(C \ G) ≥ 0.

Since δρ(C) = δρ(C \G)+δρ(G), we have δρ(C) ≥ 0, which means the inequality

(21) for C. ■

A.3 Disjoint Additivity of δ

Lemma A.2. For any C ⊆ 2X , δρ(C) =
∑

D∈C δρ(D).

44From ∅ to F \X∗ which is a singleton in the first step. In step n, such an arc exists because
we may write F = G ∪ x for G ∈ Gn and x ∈ X̃. Notice F \X∗ = (G ∪ x) \X∗. Then by the
construction of Gn we have G \X∗ ∈ Gn and therefore we have the arc (G \X∗, F \X∗) coming
out of Gn

45This is because Dc is a lower set.
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Proof. It suffices to show δρ(C ∪ E) = δρ(C) + δρ(E) for any disjoint sets C, E ⊆
2X . If there are no arcs connecting C and E , then the result is trivial. Suppose

otherwise. The values of a flow on the connecting arcs will be canceled out in

δρ(C) + δρ(E). Without loss of generality, suppose that there is a connecting arc

(D,D ∪ x) and D ∈ C and D ∪ x ∈ E . Then the value K(ρ,D ∪ x, x) of the flow

on the arc is added to δρ(C) and subtracted from δρ(E). Thus the value is canceled
out in δρ(C) + δρ(E). In the same way, the value K(ρ,D ∪ x, x) of the flow on the

connecting arc (D,D ∪ x) and D ∈ E and D ∪ x ∈ C will be canceled out. ■

A.4 Proof of Corollary 3.11

We prove the corollary by proving the following two lemmas. The first lemma shows

that checking all test collections belong to D, rather than all complete collections,

is enough.

Lemma A.3. If δρ(C) ≥ 0 is for any test collection C ⊆ D, then δρ(Ĉ) ≥ 0 for

any complete collection Ĉ such that ∅ ̸∈ Ĉ.

This lemma reduces the number of conditions to be checked because any test

collection is complete and it allows us to focus only on D. The next lemma shows

that we do not have to check δρ(C) ≥ 0 for the nonessential test collections.

Lemma A.4. Let C ≡ {A ∪ E | E ∈ E} be a test collection with A ⊆ X̃ and

E ⊆ 2X
∗
. Assume that C ⊆ D. (i) If E = 2X

∗
, then δρ(C) = 0; (ii) Suppose

K(ρ,D, x) ≥ 0 for all (D, x) ∈ M. If A = X̃ or A = ∅, then δρ(C) ≥ 0.

Combining Proposition 3.10, Lemmas A.3 and A.4 immediately imply that

checking the essential collections belonging to D, rather than all test collections,

is enough, which is the statement of the corollary.

A.4.1 Proof of Lemma A.3

We will prove the statement by the following two steps.

Step 1: If δρ(Ĉ) ≥ 0 for any test collection Ĉ ⊆ D, then δρ(C) ≥ 0 for any test

collection C such that ∅ ̸∈ C.
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Proof. Fix a test collection C such that ∅ ̸∈ C. Assume that C ̸⊆ D.

Case 1: Suppose that C ∩ D = ∅. By the property of D (i.e., D ∈ D & E ⊇
D =⇒ E ∈ D), there are no observable inflow into C. That is, if there exists

(E, y) such that E ̸∈ C and E ∪ y ∈ C, then E ∪ y ̸∈ D, which shows that δρ(C)
does not contain any −

∑
(E,y):E ̸∈C,E∪y∈C,E∪y∈D,y∈X̃ K(ρ, E ∪ y, y). Moreover, since

∅ ̸∈ C, δρ(C) does not contain −1{∅ ∈ C, X ̸∈ C} either. This means that δρ(C)
does not contain any negative terms. Thus δρ(C) ≥ 0.

Case 2: Suppose that C ∩ D ̸= ∅. Let C∗ = C ∩ D. By the property of D (i.e.,

D ∈ D & E ⊇ D =⇒ E ∈ D), D is complete. Since C is complete, its union C∗

is also complete. Since C∗ ⊆ D, it follows from our supposition that δρ(C∗) ≥ 0.

By the disjoint additivity of δρ (Lemma A.2), δρ(C) = δρ(C∗) +
∑

D∈C\C∗ δρ({D}).
Since for any D ∈ C \ C∗ ≡ C ∩ Dc, we have {D} ∩ D = ∅. Since D ̸= ∅, by Case

1, we have δρ({D}) ≥ 0. Thus, we have δρ(C) ≥ 0. ■

Step 2: If δρ(C) ≥ 0 is for any test collection C such that ∅ ̸∈ C, then δρ(Ĉ) ≥ 0

for any complete collection Ĉ such that ∅ ̸∈ Ĉ.
Proof. Fix a complete collection Ĉ such that ∅ ̸∈ Ĉ. Decompose Ĉ as follows: for

each A ⊆ X̃ write CA = {D ∈ Ĉ : D \X∗ = A}. Clearly Ĉ =
⋃

A⊆X̃ CA. It is easy
to see that each CA is a test collection and ∅ ̸∈ CA. Thus by the assumption of the

step, δρ(CA) ≥ 0. Notice that for A ̸= B, CA and CB are disjoint. By Lemma A.2,

δρ(C) can be written as δρ(Ĉ) =
∑

A⊆X̃ δρ(CA) ≥ 0. ■

A.4.2 Proof of Lemma A.4

Let C ≡ {A ∪ E | E ∈ E} be a test collection with A ⊆ X̃ and E ⊆ 2X
∗
. Assume

that C ⊆ D.

Step 1: If E = 2X
∗
, then δρ(C) = 0.

Proof. By the fact that E = 2X
∗
and C ⊆ D, all flows into and out of C are

observable.46 By the equality of inflows and outflows (not necessarily nonnegative),

it follows that δρ(C) is zero. ■

46That is, (i) if there exists (D,x) such that D ∈ C and (D,x) ̸∈ C, then D ∈ D; and (ii) if
there exists (E, y) such that E ̸∈ C and E ∪ y ∈ C, then E ∪ y ∈ D.
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Step 2: Suppose K(ρ,D, x) ≥ 0 for all (D, x) ∈ M. If A = X̃ or A = ∅, then
δρ(C) ≥ 0.

Proof. Assume A = X̃. Fix any D ∈ C such that D ̸= X. By the supposition,

there is no observable flows coming out from D. Since K(ρ,D, x) ≥ 0 for all

x ∈ X̃, it follows from the definition of δρ, δρ(D) ≤ 0 for all D ̸= X. Remember

δρ(C) =
∑

D∈C δρ(D). Since δρ(D) ≤ 0 for all D ∈ C \ x, it suffices to prove

δρ(C) = 0 where C is the largest, or C = {X̃ ∪ E | E ∈ 2X
∗}. By Step 1, we have

δρ({X̃ ∪ E | E ∈ 2X
∗}) = 0.

Assume A = ∅. If ∅ ∈ C, then C = 2X
∗
by the fact that C is complete.

Thus, all inflows into C are not observable and all outflows from C are observable,

δρ(C) =
∑

(D,x):D\x∈C,D ̸∈C K(ρ,D, x) ≥ 0. ■

B Proof of Statement (b) of Theorem 3.2

First, we explain the outline of the proof of statement (b). In the proof, we

first obtain the the nonredundancy results assuming D = 2X \ ∅; then translate

the results into the given incomplete datasets. Fix an essential test collection

C∗. It suffices to show that there exists an incomplete dataset ρ that satisfies all

inequalities in (i) as well as all inequalities in (ii) except the one for C∗.

We provide a preliminary lemma that allows us to convert a flow from ∅ to X

into a complete dataset:

Lemma B.1. Let D = 2X \ ∅. If there exists r ∈ R{(D\x,D)|x∈D∈2X} satisfying the

following three conditions: (i)
∑

x∈X r(X \x,X) = 1; (ii) for any D ∈ D such that

1 ≤ |D| ≤ |X|−1,
∑

x∈D r(D\x,D) =
∑

y ̸∈D r(D,D∪y); (iii) for any x ∈ D ∈ D,∑
E:E⊇D r(E \x,E) ≥ 0, then there exists an complete dataset ρ∗ ∈ R

{(D,x)|x∈D∈2X}
+

such that
∑

x∈D ρ∗(D, x) = 1 for all D ∈ D and K(ρ∗, D, x) = r(D \ x,D) for any

(D, x) such that x ∈ D ∈ 2X .

We provide the proof of Lemma B.1 in Section D.2 in the online appendix.

For any C ⊆ N , define δr(C) ≡
∑

(D,x):

D∈C,D∪x ̸∈C,x∈X̃
r(D,D∪x)−

∑
(E,y):

E ̸∈C,E∪y∈C,y∈X̃
r(E,

E ∪ y) + 1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}.
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Given Lemma B.1, we will construct a flow r ∈ R{(D\x,D)|x∈D∈D} that satisfies

conditions (i)–(iii) in the lemma and the following two conditions: (a) r(D\x,D) ≥
0 for all x ∈ X̃; (b) δr(C∗) < 0 and δr(C) ≥ 0 for any essential test collection C
except C∗. (See Lemma B.2 below for the complete statements.) By using Lemma

B.1, we translate the flow r into a complete dataset ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ ; then

convert ρ∗ to an incomplete dataset ρ ∈ RM
+ . (See Claim below.) The most

difficult part is the construction of the flow r. The difficulty comes from the

fact that we need to change the value of δr only on one particular essential test

collection C∗ but not the others; the values of δr(C) across test collections C are

interdependent through the conservation law of the network flow; and essential test

collections exist across the network. We overcome this difficulty by constructing

several flows and combine them into one desirable flow r in an intricate way.

B.1 Main proof of statement (b)

To prove statement (b) of Theorem 3.2, we prove the following lemma:

Lemma B.2. Let D = 2X \ ∅.
(i) For each essential test collection C∗, there exists r ∈ R{(D\x,D)|x∈D∈D} that

satisfies conditions (i)–(iii) in Lemma B.1 and the following two conditions: (a)

r(D \ x,D) ≥ 0 for all x ∈ X̃; (b) δr(C∗) < 0 and δr(C) ≥ 0 for any essential test

collection C except C∗.

(ii) For each (D, x) ∈ M such that 1 < |D| < |X|, there exists r ∈ R{(D\x,D)|x∈D∈D}

that satisfies conditions (i)–(iii) in Lemma B.1 and the following two conditions:

(a) r(D \ x,D) < 0; r(E \ y, E) ≥ 0 for all (E, y) ∈ M s.t. and (E, y) ̸= (D, x);

(b)δr(C) ≥ 0 for any essential test collection C.

We provide the proof of Lemma B.2 in section D.3 in the online appendix.

Lemma B.2 shows the following claim, which implies statement (b) of Theorem

3.2.

Claim: (i) For each essential test collection C∗ ⊆ D, there exists an incomplete

dataset ρ ∈ RM such that (a) K(ρ,D, x) ≥ 0 for all (D, x) ∈ M;(b) δρ(C∗) < 0

and δρ(C) ≥ 0 for all essential test collection C ⊆ D except C∗.

(ii) For each (D, x) ∈ M such that 1 < |D| < |X|, there exists an incomplete
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dataset ρ ∈ RM such that (a) K(ρ,D, x) < 0; and K(ρ, E, y) ≥ 0 for all (E, y) ∈
M \ {(D, x)}; (b) δρ(C) ≥ 0 for all essential test collection C ⊆ D.

Proof of Claim: We first prove statement (i), fix C∗ ⊆ D. By Lemma B.2

(ii), there exists r ∈ R{(D\x,D)|x∈D∈2X} that satisfies conditions (i)–(iii) in Lemma

B.1 and conditions (a) and (b) in Lemma B.2 (i). By Lemma B.1, there exists a

complete dataset ρ∗ ∈ R
{(D,x)|x∈D∈2X}
+ such that

∑
x∈D ρ∗(D, x) = 1 for all D ∈ 2X

and K(ρ∗, D, x) = r(D \ x,D) for any (D, x) such that x ∈ D ∈ 2X . Let ρ be

the restriction of ρ∗ to M. In the following, we will show that δρ(C∗) < 0 and

δρ(C) ≥ 0 for all essential test collection C ⊆ D except C∗.

Let δρ∗ be the function defined by (10) with respect to the complete dataset

ρ∗ with D = 2X and X∗ = ∅.47 Let δρ be the function defined by (10) with respect

to the incomplete dataset of ρ with given D and X∗. Remember δr is the function

defined after Lemma B.1. Note that for any test collection C ⊆ D, δr(C) = δρ∗(C) =
δρ(C), where the first equality holds because K(ρ∗, D, x) = r(D \ x,D) and the

second equality holds because the value of δ does not depend on the values of ρ∗

and ρ outside of M; and ρ = ρ∗ on M. Thus, we have δρ(C∗) < 0 and δρ(C) ≥ 0

for all essential test collection C ⊆ D except C∗.

Statement (ii) can be proved exactly in the same way using Lemma B.2 (ii)

in stead of (i).

C Proof of Propositions

C.1 Proof of Proposition 3.5

By Falmagne (1978), it suffices to show that K(ρ̂, D̂, x) ≥ 0 for all (D̂, x) such

that x ∈ D̂ ∈ D̂. Choose D̂ ∈ D̂. Write D = D̂ ∩ X̃.

Case 1: x0 ∈ D̂. Then D̂ = D ∪ x0. By calculation, we have K(ρ̂, D ∪ x0, x) =

K(ρ,D ∪ X∗, x) for x ∈ D. Thus the nonnegativity of K(ρ̂, D ∪ x0, x) is im-

mediate from condition (i). By calculation, again, we have K(ρ̂, D ∪ x0, x0) =∑
y/∈D∪X∗ K(ρ, (D ∪ y)∪X∗, y)−

∑
x∈D K(ρ,D ∪X∗, x) ≥ 0, where the inequality

47That is, δρ∗(C) =
(∑

(D,x):D∈C,D∪x ̸∈C K(ρ∗, D ∪ x, x)−
∑

(E,y):E ̸∈C,E∪y∈C K(ρ∗, E ∪ y, y)
)

+ 1{X ∈ C, ∅ ̸∈ C} − 1{∅ ∈ C, X ̸∈ C}.
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holds by the inequality (2) in condition (ii) for the test collection C = {D∪X∗}.48

Case 2: x0 /∈ D̂ (i.e., D ⊆ X̃). Then D̂ = D. By the definition, we have

ρ̂(D, x) = ρ(D, x), thus
∑

E⊇D K(ρ, E, x) =
∑

Ê⊇D K(ρ̂, Ê, x), which gives

K(ρ̂, D, x) =
∑

E:E⊇D

K(ρ, E, x)−
∑

Ê:Ê⊋D

K(ρ̂, Ê, x)

=
∑

E:E⊇D,E ̸⊇X∗

K(ρ, E, x)−
∑

E:X̃⊇E⊋D

K(ρ̂, E, x),

where the second equality holds because K(ρ, E, x) = K(ρ̂, Ê, x), where Ê =

(E ∩ X̃) ∪ x0, for all E ⊇ X∗. Thus for any D such that D ⊆ X̃, we have

K(ρ̂, D, x) =
∑

E:E⊇D,E ̸⊇X∗

K(ρ, E, x)−
∑

E:X̃⊇E⊋D

K(ρ̂, E, x). (23)

By the assumptions of the proposition, K(ρ, E, x) ≥ 0 for all E ⊆ X and

x ∈ X̃ and K(ρ̂, E ∪ x0, x) ≥ 0 for all E ⊆ X̃ and x ∈ E ∪ x0. We wish to show

that K(ρ̂, D, x) ≥ 0 for all D ⊆ X̃. We proceed by induction. The base case is

D = X̃, for which that claim holds vacuously because
∑

E:X̃⊇E⊋D K(ρ̂, E, x) = 0.

Fix D ⊆ X̃ and x ∈ D and suppose that K(ρ̂, E, x) ≥ 0 for all X̃ ⊇ E ⊋ D.

It suffices to show the result for deterministic ρ. By the induction assumption we

see that ρ̂ is rationalizable on the upper set domain {(E, x) : x ∈ E ∈ D̂, E ⊋ D}.
Since ρ is deterministic, so is ρ̂ and thus there is a a single order ≻̂ on X̂ that

rationalizes ρ̂. We see thatK(ρ̂, E, x) = 1(Ec ≻̂ x ≻̂ E\{x}) for E on the restricted

domain. Thus we see that there is at most one E ′ ⊋ D with K(ρ̂, E ′, x) > 0. If

there is no such E ′, then the term
∑

E:X̃⊇E⊋D K(ρ̂, E, x) = 0; thus (23) and the

supposition of the proposition implies K(ρ,D, x) ≥ 0.

48Note that if a test collection C is a singleton then C = {A ∪ X∗} ⊆ D for some D such
that ∅ ⊊ D ⊊ X̃. The term

∑
y/∈D∪X∗ K(ρ, (D ∪ y) ∪X∗, y) is the value of total outflows from

{D ∪X∗};
∑

x∈D K(ρ,D ∪X∗, x) is the value of observable inflow into the node. Thus the sum
is the total outflow minus the observable inflows.
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If such E ′ does exist then
∑

E:X̃⊇E⊋D K(ρ̂, E, x) = K(ρ̂, E ′, x) = 1. Also,

1 = K(ρ̂, E ′, x) =
∑

F :F⊇E′,F ̸⊇X∗

K(ρ, F, x)−
∑

F :X̃⊇F⊋E′

K(ρ̂, F, x)

=
∑

F :F⊇E′,F ̸⊇X∗

K(ρ, F, x),

where the second equality holds by (23) and the third equality holds by the

fact that there is no F such that F ⊋ E ′ with K(ρ̂, F, x) > 0. Therefore∑
E:E⊇D, E ̸⊇X∗ K(ρ, E, x) ≥

∑
F :F⊇E′,F ̸⊇X∗ K(ρ, F, x) = 1. It follows from (23)

and
∑

E:X̃⊇E⊋D K(ρ̂, E, x) = 1 that K(ρ̂, D, x) ≥ 0. Thus, the claim holds for all

D ⊆ X̃ by induction.

C.2 Proof of Proposition 4.5

By Möbius inversion, the condition (ii) in Definition 4.4 can be written as follows:

for all (D, x) such that x ∈ D ∈ 2X , µ({≻∈ L | Dc ≻ x ≻ D \ x) = K(ρ∗, D, x).

Thus by condition (7), if r is a solution to (P2) then µ({≻∈ L | Dc ≻ x ≻ D\x}) =
r(D \ x,D). Therefore condition (ii) is equivalent to

r(D \ x,D) = K(ρ∗, D, x) for all (D, x) such that x ∈ D ∈ 2X . (24)

Thus we can rewrite the set Γ (i.e., (14)) as follows:{
ρ∗ ∈ R

{(D,x)|x∈D∈2X}
+

∣∣∣∣ There exists a solution r ∈ R
{(D\x,D)|x∈D∈2X}
+ to

(P2) satisfying (24) and ρ∗ = ρ on M.

}
(25)

By eliminating observable flows r (i.e., r(D\x,D) = K(ρ,D, x) for all (D, x) ∈ M)

in (P2), it can be verified that the conditions (5) and (6) of (P2) are equivalent

to (16).49 Using the Möbius inversion formula, we also can rewrite (24) into the

following: for all (D, x) such that x ∈ D ∈ 2X , we have

ρ∗(D, x) =
∑

E:E⊇D

r(E \ x,E), (26)

49Condition (7) in (P2) is implied by (24) and ρ∗ = ρ on M.
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where r(E \ x,E) = K(ρ, E, x) for all (E, x) ∈ M. These observations imply that

we can rewrite the set (25) into the following set:{
ρ∗ ∈ R

{(D,x)|x∈D∈2X}
+

∣∣∣∣ There exists r ∈ R
{(D\x,D)|x∈D∈2X}
+

satisfying (16) and (26) and ρ∗ = ρ on M

}
. (27)

It follows that the upper bound becomes ρ(D, x) = max
r∈R{(D,x)|x∈D∈2X}

+

∑
E:E⊇D r(E\

x,E) subject to (16), where r(E \ x,E) = K(ρ, E, x) for all (E, x) ∈ M. The cor-

responding result for the lower bound can be obtained by changing max to min.
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**For Online Publication**

Online Appendix

D Omitted Proofs

D.1 Proof of Lemma A.1

To prove the lemma we prove the following general result:

Theorem D.1. Let T, S ⊆ N such that S ∩ T = ∅, a : S → R+, b : T →
R+ such that

∑
s∈S a(s) = 1 =

∑
t∈T b(t). There exists r : A → R+ such that

∀s ∈ S[r(s,N ) − r(N , s) = a(s)], ∀D ∈ N \ (S ∪ T )[r(D,N ) − r(N , D) = 0],

∀t ∈ T [r(N , t) − r(t,N ) = b(t)], ∀(D,E) ∈ A[l(D,E) ≤ r(D,E) ≤ u(D,E)] if

and only if the following conditions hold for any C ⊆ N :

∑
(D,E)∈C×Cc

u(D,E)−
∑

(D,E)∈Cc×C

l(D,E) ≥
∑

t∈Cc∩T

b(t)−
∑

s∈Cc∩S

a(s). (28)

Proof.

Necessity: Suppose a feasible flow r exists.
∑

t∈Cc∩T b(t) −
∑

s∈Cc∩S a(s) ≤
r(C, Cc)− r(Cc, C) ≤

∑
(D,E)∈C×Cc u(D,E)−

∑
(D,E)∈Cc×C l(D,E).

Sufficiency: Define an extended network with lower bound by N ∗ = N ∪{s∗, t∗}
and A∗ = A ∪ {(s∗, s) | s ∈ S} ∪ {(t, t∗) | t ∈ T} and u∗(s∗, s) = a(s),

l∗(s∗, s) = 0 for all s ∈ S, u∗(t, t∗) = b(t), l∗(t, t∗) = 0 for all t ∈ T , u∗(D,E) =

u(D,E), l∗(D,E) = l(D,E) for all other arcs.

We first define the residual capacity function e in the augmented network: for

any C∗ ⊆ N ∗, e(C∗,N ∗\C∗) =
∑

(D,E)∈C∗×(N ∗\C∗) u
∗(D,E)−

∑
(D,E)∈(N ∗\C∗)×C∗ l∗(D,E).50

(Similarly, we define the residual capacity function in the original network as fol-

lows: for any C ⊆ N e(C,N\C) =
∑

(D,E)∈C×(N\C) u
∗(D,E)−

∑
(D,E)∈(N\C)×C l

∗(D,E).)

Then we will prove that (N ∗ \ {t∗}, t∗) is a minimum s∗-t∗ cut. Let be any

C∗ ⊆ N ∗ such that s∗ ∈ C∗ and t∗ ̸∈ C∗. That is, (C∗,N ∗ \ C∗) be an arbitrary cut

50We write N ∗ \ C∗ instead of (C∗)c to clarify the underling space is N ∗ not N .
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separating s∗ and t∗. Let C = C∗ ∩N . Then by the structure of network,

e(C∗,N ∗ \ C∗)− e(N ∗ \ {t∗}, t∗)

= e(s∗,N ∗ \ C∗) + e(C,N ∗ \ C∗)− e(N ∗ \ {t∗}, t∗) (∵ s∗ ∈ C∗)

= e(s∗,N ∗ \ C∗) + e(C,N \ C) + e(C, t∗)− e(N ∗ \ {t∗}, t∗) (∵ t∗ ∈ N ∗ \ C∗)

= e(s∗, (N \ C) ∩ S) + e(C,N \ C) + e(C ∩ T, t∗)− e(T, t∗)

= e(s∗, (N \ C) ∩ S) + e(C,N \ C)− e((N \ C) ∩ T, t∗)

=
∑

s∈(N\C)∩S

a(s) + e(C,N \ C)−
∑

t∈(N\C)∩T

b(t)

=
∑

s∈(N\C)∩S

a(s) +

 ∑
(D,E)∈C×(N\C)

u(D,E)−
∑

(D,E)∈(N\C)×C

l(D,E)

−
∑

t∈(N\C)∩T

b(t),

which is nonnegative by (28). Thus e(C∗,N ∗ \ C∗) ≥ e(N ∗ \ {t∗}, t∗) for any cut

(C∗,N ∗ \ C∗) separating s∗ and t∗ if and only (28) holds for any C ⊆ N .

It follows from the maximum-flow theorem with lower bounds (Theorem 6.1

Ahuja, Magnanti, and Orlin (1988)) that (28) implies the existence of a flow r∗ from

s∗ to t∗ that saturates all arcs of (T, t∗), that is, r∗(t, t∗) = b(t) for all t ∈ T . Since∑
s∈S a(s) = 1 =

∑
t∈T b(t), we must have r∗(s∗, s) = a(s) for all s ∈ S. These

equalities imply that r∗(S,N ) = 1 and r∗(N , T ) = 1 and r∗(D,N ) = r∗(N , D) for

all D ∈ N \ (T ∪S). Now define r as a restriction of r∗ on (N ,A). Then r satisfies

all desired conditions. □

By the theorem, we obtain the lemma by letting both T and S singletons.

D.2 Proof of Lemma B.1

For any (D, x) such that x ∈ D ∈ 2X , define ρ(D, x) =
∑

E⊇D r(E \ x,E). By

(iii), we have ρ(D, x) ≥ 0 for all (D, x) such that x ∈ D ∈ 2X . Fix any D

to show
∑

x∈D ρ(D, x) = 1. Then we have
∑

x∈D ρ(D, x) =
∑

x∈D
∑

E⊇D r(E \
x,E) =

∑
y∈D r(D \ y,D) +

∑
x∈D

∑
E⊇D

|E|≥|D|+1
r(E \ x,E) =

∑
E⊇D

|E|=|D|+1
r(D,E) +∑

x∈D
∑

E⊇D
|E|≥|D|+1

r(E\x,E) =
∑

E⊇D
|E|=|D|+1

∑
y∈E∩Dc r(E\y, E)+

∑
x∈D

∑
E⊇D

|E|=|D|+1
r(E\
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x,E)+
∑

x∈D
∑

E⊇D
|E|≥|D|+2

r(E\x,E) =
∑

y∈E
∑

E⊇D
|E|=|D|+1

r(E\y, E)+
∑

x∈D
∑

E⊇D
|E|≥|D|+2

r(E\

x,E) =
∑

x∈E
∑

E⊇D
|E|≥|D|+1

r(E \x,E), where the third equality holds by appling (ii)

for the first term; the fourth equality is obtained by rewriting the first term and

dividing the second term into the two terms; and the second to the last equal-

ity is obtained by combining the first two terms into one. Note that the last

term has the same form as the term in the first equation but in the last term the

summation over E = D is deleted. By repeating this, we get
∑

x∈D ρ(D, x) =∑
x∈E

∑
E⊇D

|E|≥|D|+2
r(E \ x,E). Finally we get

∑
x∈D ρ(D, x) =

∑
y∈X r(X \ y,X),

which is equal to 1 by (i).

D.3 Proof of Lemma B.2

D.3.1 Proof of statement (i) in Lemma B.2

Fix an essential test collection C∗. In the following, we will construct a flow r from

∅ to X such that δr(C∗) < 0 and δr(C) ≥ 0 for any other essential test collection

C ̸= C∗.

Let A∗ be such that D \ X∗ = A∗ for all D ∈ C∗. (Such A∗ exists because

C∗ is a test collection.) Since C∗ is essential, A∗ ̸= ∅ and A∗ ̸= X̃. Let D̂ ≡ {D |
there exists an essential test collection C such that D ∈ C}.

In the following we prove five claims to prove this lemma.

Claim D.2. There exists a ∅ −X directed path Π1 avoiding any nodes in D̂.

Proof. We first construct a directed path ∅ − X̃ that avoids any node in D̂ by

adding each element of X̃ one by one. Note that each node A does not appear

in any essential test collection since the only test collection containing A is the

nonessential test collection {A ∪ E | E ∈ 2X
∗}, which appears in Lemma A.4 (i).

In the same way, we next construct a directed path X̃ − X that avoids any

node in D̂ by adding each element of X∗ one by one. Note that each such node

can be written as X̃ ∪ E for some E ∈ 2X
∗
and does not appear in any essential

test collection since the only test collection containing the set is the nonessential

test collection {X̃ ∪ E | E ∈ E}, which appears in Lemma A.4 (ii).
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By combining these two directed paths, we obtain a desirable ∅ −X directed

path avoiding any nodes in D̂. ■

The next claim shows that for each node D in C∗, there is a flow in which

the value of δ is negative on the node D and the values of δ on the other nodes

in D̂ are zero. For simplicity, we introduce a notation: Fix D,E ⊆ X such that

D ⊊ E. For each directed path Π from D to E in the network defined by (22),

define rΠ ∈ R{(F,F∪x)|x∈F∈2X} by

rΠ(F, F ∪ x) =

{
1 if (F, F ∪ x) is an arc that belongs to Π,

0 otherwise.
(29)

Claim D.3. Fix ε ∈ (0, 1]. For any D in C∗, there exists a flow r1D such that

δ({D}) = −ε and δ({D̂}) = 0 for any D̂ ∈ D̂ \D. Moreover r1D satisfies the three

conditions in the Lemma B.1.

Proof. Fix D ∈ C∗. Consider

• an ∅ −D directed path Π2 containing going through the node D \ A∗,

• an A∗ −X directed path Π3 which avoid any nodes in D̂ (Such a path exists

because we can take the union of any A∗ − X̃ directed path and any X̃ −X

directed path as in Claim A.3.),

• The directed path Π4 from A∗ to D which follows the same order as Π3.

Remember the definition (29). Fix ε > 0 and define r1D ≡ (1− ε)rΠ1 + εrΠ2 +

εrΠ3 − εrΠ4 . Note that r1D satisfies the three conditions in Lemma B.1. To confirm

the condition (iii) is satisfied it suffices to show that all negative flows are cancelled

in the sum
∑

E:E⊇D r(E\x,E). (All of the negative flows are in Π4 and are canceled

by some flow in Π3 because Π4 follows the same order as Π3.)

Note also that in the flow, δr1D({A
∗}) = δr1D({D\A∗}) = ε and δr1D({X̃}) = −1.

To see δr1D({D}) = −ε note that an arc going into D exists and is observable

because A∗ is not empty and consists of observable alternatives.
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Moreover, for all other D̂ ∈ D̂, δr1D({D̂}) = 0. (To see this note that δ is

non-zero only when observable inflows are not equal to observable outflows.51 )

Since A∗, X̃,D\A∗ /∈ D̂ by Lemma A.4, we have δ({D̂}) = 0 for any D̂ ∈ D̂\D.

This completes the proof of the claim. ■

The next claim shows that for each node D in C∗, there is a flow from ∅ to X

in which the value of δ is positive on the node D and the values of δ on the other

nodes in D̂ is zero.

X

X̃

A∗

D

D \ A∗

∅

+ε

+ε−ε

+ε

+ε

X

A

D

D ∪ X̃

∅

+ε

+ε

+ε

+ε

Figure 5: Flow r1D in Claim D.3 (left); Flow r2D in Claim D.4 (right)
Note: Given an incomplete dataset ρ ∈ RM

+ , solid arrows correspond to observable flows and

dotted arrows correspond to unobservalbe flows.

Claim D.4. Fix ε ∈ (0, 1]. For any D in C∗, there exists a flow r2D such that

δr2D({D}) = ε and δr2D({D̂}) = 0 for all D̂ ∈ D̂ \D. Moreover the flow r2D satisfies

the all conditions in Lemma B.1.

Proof. Choose any directed path from ∅−X that goes through nodes A,D, and

X̃ ∪D. We denote the path by Π5. Define r2D ≡ (1− ε)rΠ1 + εrΠ5 . Note that r2D

satisfies the all conditions in Lemma B.1.

In the flow, δr2D({A
∗}) = δr2D(X̃ ∪D) = −ε and δr2D({D}) = ε.

51In the figure, this occurs when a dotted line becomes a solid line or vice-versa in the diagram.
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Moreover, for all other D̂ ∈ D̂, δr2D({D̂}) = 0 by the same reaon as the

previous claim. Since A∗, X̃ ∪ D ̸∈ D̂, we have δr2D({D̂}) = 0 for all D̂ ∈ D̂ \ D.

This completes the proof of the claim. ■

Claim D.5. Fix ε ∈ (0, 1]. There exists a flow r̂ such that (i) −1/(2|C∗|) =

δr̂(C∗) ≤ δr̂(C) for any essential test collection C; (ii) If C ̸⊇ C∗ then δ(C) ≥ 0.

Proof. Define r3 ≡
∑

D∈C∗
1

|C∗|r
1(D).Then, δr3({D}) = − ε

|C∗| for each D ∈ C∗;

moreover, for all D̂ ∈ D̂\C∗, δr3({D̂}) = 0. Define r4 ≡ 1
|C∗|r

Π1 + |C∗|−1
|C∗| r2(A∗∪X∗).

Then, δr4({A∗∪X∗}) = |C∗|−1
|C∗| ε; moreover, for all D̂ ∈ D̂\C∗, δr4({D̂}) = 0.52 Define

r̂ = 1/2r3 + 1/2r4. In r̂, we have δr̂(C∗) =
∑

D∈C∗ δr̂({D}) = 1
2

(
− 1 + |C∗|−1

|C∗|

)
ε =

− 1
2|C∗|ε.

Step 1: δr̂(C∗) ≤ δr̂(C) for any essential test collection C.
Proof. Fix any essential test collection C. We consider the following two cases.

Case 1: There exists D ∈ C such that D \ X∗ ̸= A∗ . (In fact, in this case,

by the definition of essential test collection, D \ X∗ ̸= A∗ for all D ∈ C.) Then,

C ∩ C∗ = ∅. Since D̂ ∈ D̂ \ C∗, δr̂({D̂}) = 0, we have δr̂(C) = 0 ≥ δ(C∗).

Case 2: D \X∗ = A∗ for all D ∈ C. Since C is complete, C contains A∗ ∪X∗.

Since C∗ contains all D ∈ D̂ such that δr̂({D}) < 0 it is clear that δr̂(C) ≥
δr̂(C∗). ■

Step 2: If C ̸⊇ C∗ then δ(C) ≥ 0.

Proof. Suppose that C ̸⊇ C∗. Then there exists D∗ ∈ C∗ such that D∗ /∈ C. By

Step 1, δr̂(C∪{D∗}) ≥ δ(C∗) = − 1
2|C∗|ε. Also by definition of r̂, δr̂({D∗}) = − 1

2|C∗|ε

so δr̂(C) = δr̂(C ∪ {D∗})− δr̂({D∗}) ≥ 0. ■

□

We finally prove the statement of the lemma:

Claim D.6. There exists a flow r∗ from ∅ to X such that δr∗(C∗) < 0 and δr∗(C) ≥
0 for any other essential test collection C ̸= C∗.

Proof. For each essential test collection C such that C∗ ̸⊇ C, choose DC ∈ C \ C∗.

Let F be the collection of such DC. (Since the number of test collections is finite, F
52Note that A∗ ∪X∗ ∈ C∗.
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is a finite collection.) Define r∗ ≡ αr̂+(1−α)
∑

DC∈F
1
|F|r

2
DC

. Then for any essential

test collection C, δr∗(C) = αδr̂(C) + (1−α)
∑

DC∈F
1
|F|δr2DC

(C). Since δr2DC
(DC) > 0,

there exists α small enough such that for any essential test collection C such that

C∗ ̸⊇ C, we have δr∗(C) ≥ 0.

Note that δr∗(C∗) = − α
2|C∗|ε. Note also that r2DC

does not decrease values of

δ for any test collection. Thus by statement (ii) of the previous claim, we have if

C ̸⊇ C∗ then δr∗(C) ≥ 0. It follows that δr∗(C∗) < 0 and δr∗(C) ≥ 0 for any other

essential test collection C ̸= C∗. ■

D.3.2 Proof of statement (ii) in Lemma B.2

Choose any arc (D \ x,D) with x ∈ X̃, D \ x ̸= ∅, D ̸= X. Let D̂ ≡ {D |
there exists an essential test collection C such that D ∈ C}. We will consider two

cases:

Case 1: Dc ∩ X̃ ̸= ∅. Let Π1 be a ∅ to X dipath which avoids any nodes

in D̂. (Such a dipath exists by Claim A.3 in Section B.1.) Let Π2 be a dipath

from ∅ to D which passes through D ∩ X̃. Let Π3 be a D \ x to X dipath which

passes through D∪ X̃ but not D. Such a dipath exists because Dc∩ X̃ ̸= ∅ implies

that there exists an observable alternative y ∈ Dc ∩ X̃ and there exists an arc

(D \ x,D ∪ y \ x). Fix ε > 0 and define r∗ ≡ (1− ε)rΠ1 + εrΠ2 − εr(D\x,D) + εrΠ3 .

By definition, r∗(D\x,D) < 0 and r∗(E \y, E) ≥ 0 for any (E, y) such that y ∈ X̃

and (D, x) ̸= (E, y). Moreover, for any essential test collection C, δr∗(C) ≥ 0.

To see this notice that the flow rΠ1 does not change any value of δr(C) for any

essential test collection. By the definition of r∗, we have δr∗({D \ x}) = 0 and

δr∗({D}) ≥ 0.53 For all other nodes E, δr∗({E}) = 0. Thus, we have δr∗(C) ≥ 0

for any essential test collection C.
Case 2: Dc ∩ X̃ = ∅. This means that D contains all elements in X∗.

Notice (D \ x) ∩ X∗ ̸= X∗ since otherwise D = X. So let Π4 be a D \ x to X

dipath that passes through (D \ x)∪X∗. (Note that the last arc is observable arc

(X \ x,X), where x ∈ X̃.) Define r∗ ≡ (1 − ε)rΠ1 + εrΠ2 − εr(D\x,D) + εrΠ4 . By

definition, r∗(D \ x,D) < 0 and r∗(E \ y, E) ≥ 0 for any (E, y) such that y ∈ X̃

53δr∗({D}) is either 0 or ε.
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X

D ∪ X̃

D \ x

D

D ∩ X̃

∅

+ε

+ε−ε

+ε

+ε

X

(D \ x) ∪X∗

D \ x

D

D ∩ X̃

∅

+ε

+ε−ε

+ε

+ε

Figure 6: Flow εrΠ2 −εr(D\x,D)+εrΠ3 in Case 1 (left); Flow εrΠ2 −εr(D\x,D)+εrΠ4

in Case 2 (right) of section D.3.2

and (D, x) ̸= (E, y). Moreover, for any essential test collection C, δr∗(C) ≥ 0. To

see this notice (i) δr∗({D \ x}) = −ε but δr∗({(D \ x) ∪ X∗}) = ε; (ii) any test

collection C containing D \ x contains (D \ x) ∪X∗. (i) and (ii) implies that the

negative value of δr∗({D\x}) is cancelled by the positive value of δr∗((D\x)∪X∗).

For all other nodes E, δr∗({E}) = 0. Thus, we have δr∗(C) ≥ 0 for any essential

test collection C.

E Supplemental Contents

E.1 Meaning of condition (ii) in Theorem 3.2

Suppose that an incomplete dataset ρ is RU-rationalizable by µ. To understand the

meaning of condition (ii) in Theorem 3.2, fix a test collection C = {A∪E | E ∈ E}
and define Ĉ = {C ∈ C | C \ x∗ ̸∈ C for some x∗ ∈ X∗}. 54 Also, for each C ∈ Ĉ,

54In a Boolean lattice that we will explain later, the subcollection Ĉ can be interpreted as
bottom parts of C.
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let UC = {x∗ ∈ X∗ | C \ x∗ /∈ C}.55 We can show that the left hand side of (2) is

∑
C∈Ĉ

µ
(
≻∈ L | Cc ≻ C and max

C
≻∈ UC

)
, (30)

where maxC ≻ denotes the best element in C with respect to ≻. In particular,

when the test collection C is a singleton of the form {D} where X∗ ⊆ D, (30)

simplifies to µ(≻∈ L|∃x∗ ∈ X∗ s.t. Dc ≻ x∗ ≻ D \ x∗).

Equation (30) can be derived as follows. By the inflow-outflow equality, the

total flow out of C minus the total flow into C is zero. Note that since C is an

essential test collection, there are no unobservable flows out of C. Thus the left

hand side of (2) is only missing the unobservable flows into C. That is,

( ∑
(D,x):D∈C,D∪x ̸∈C

K(ρ,D ∪ x, x)−
∑

(F,y):F ̸∈C,F∪y∈C,y∈X̃

K(ρ, F ∪ y, y)

)

−
∑

(F,z):F ̸∈C,F∪z∈C,z∈X∗

K(ρ, F ∪ z, z) = 0.

It follows that the left hand side of (2) equals

∑
(F,z):F ̸∈C,F∪z∈C,z∈X∗

K(ρ, F ∪ z, z).

Applying equation (1) yields (30).

E.2 Random utility polytope

In this section, we provide a geometric intuition for the set of RU rational stochastic

choice functions. LetM be the set of pairs of (D, x) such that ρ(D, x) is observable.

55In a Boolean lattice, UC is the set of unobservable alternatives x∗ where (C \x∗, C) is an arc
from outside of C going into C.
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Remark E.1. For each ranking ≻∈ L and (D, x) ∈ M, define

ρ≻(D, x) =

{
1 if x ≻ y for all y ∈ D \ x;
0 otherwise.

(31)

The stochastic choice function ρ≻ gives probability one to the best alternative x in

a choice set D according to the ranking ≻. The set of RU-rationalizable datasets

is a polytope, that is, co.{ρ≻ |≻∈ L}, where co. denotes the convex hull.

ρπ1ρπ2

ρπ3

ρπ4 ρπ5

ρπ6

Figure 7: Random utility polytope

The hexagons in Figure 7 illustrates the polytope.56 The inequality conditions

in Theorem 3.2 consist of the facet defining inequalities of the polytope, which

correspond to the blue hyperplanes. On the other hand, as we will explain in the

next section, McFadden and Richter’s approach would contain non-facet defining

inequalities, which correspond to the red hyperplanes.

E.3 Generalization McFadden and Richter (1990)

McFadden and Richter (1990) provide a characterization of the random utility

model under menu unobservability. Unlike the characterization of Falmagne (1978),

the characterization of McFadden and Richter (1990) holds when the frequencies

of all alternatives are observed on an arbitrary set of observable menus. However,

56Although the geometric intuition is useful, it is important to notice that the figure oversim-
plifies the reality since the number (i.e., |X|!) of vertices and the dimension of a random utility
function can be very large. To see why the dimension of a random utility function can be very
large, notice that it assigns a number for each pair of (D,x) ∈ M.
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their characterization fails when some alternatives are unobservable. Their charac-

terization is obtained as the dual of the existence of a rationalizing random utility

model through the Farkas’s lemma. This dual condition, unlike our main theorem,

involves an infinite number of inequalities. In this section we first show how the

characterization in McFadden and Richter (1990) is insufficient in our setup. We

then generalize the characterization of McFadden and Richter (1990) to arbitrary

domains, including those with unobservable alternatives.

Let M be the set of pairs (D, x) such that x ∈ D ∈ 2X and ρ(D, x) is well

defined (i.e., ρ(D, x) is observable to the analyst). In the following, we call M
the set of observable pairs. We write the set of datasets as P(M). In McFadden

and Richter (1990), it is assumed that all alternatives are observable. That is,

if (D, x) ∈ M then (D, y) ∈ M for all y ∈ D. Equivalently, M := {(D, x) ∈
D × X | x ∈ D} for some D ⊆ 2X \ ∅.57 In the main body of the paper, we

assumed M ≡ {(D, x) ∈ D × X̃ | x ∈ D}.58 In the following section we will

consider arbitrary M ⊆ {(D, x) | x ∈ D ∈ 2X} which generalizes both the setup

of McFadden and Richter (1990) and our setup.

McFadden and Richter (1990) characterize random utility for the no unob-

servable alternative case with the following axiom sometimes called the Axiom of

Revealed Stochastic Preference (ARSP).

Definition E.2. A stochastic choice function satisfies the Mcfadden-Richter axiom

if for any sequence finite (Di, xi)
k
i=1 ∈ Mk for all k,

max
≻∈L(X)

∑
i

ρ≻(Di, xi) ≥
∑
i

ρ(Di, xi).

However, this is not sufficient to characterize random utility in our setup.

Consider the following example:

Remark E.3. Let X = {a, b, c, d} and X∗ = {c, d} and M = {(X, a), (X \ b, a)}.
Let ρ be such that ρ(X, a) = 0 and ρ(X\b, a) = 1. This is obviously not RU-rational

57The formal definition of P(M) can be provided as follows: P(M) = {ρ ∈ RM
+ | For all D ∈

D (i) if (D,x) ∈ M for any x ∈ D, then
∑

x∈D ρ(D,x) = 1; (ii) if (D,x) ̸∈ M for some x ∈
D, then

∑
x∈D ρ(D,x) ≤ 1}.

58In Falmagne (1978), M is assumed to be {(D,x) | x ∈ D ∈ 2X}.
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as it violates monotonicity (in particular condition (i) is violated). However, fix

≻0∈ L(X) be such that a ≻0 b ≻0 c ≻0 d. That is, ρ≻0(X, a) = ρ≻0(X \ b, a) = 1.

Then since ρ≻0(D, x) ≥ ρ(D, x) for all (D, x) ∈ M, we observe that

∑
i

ρ≻0(Di, xi) ≥
∑
i

ρ(Di, xi).

and thus since max≻∈L(X)

∑
i ρ

≻(Di, xi) ≥
∑

i ρ
≻0(Di, xi), ρ satisfies the McFadden-

Richter Axiom but not RU rationalizability.

We provide the following characterization that works for arbitrary M ⊆
{(D, x) ∈ 2X ×X | x ∈ D}.

Definition E.4. A stochastic choice function ρ satisfies the Generalized McFadden-

Richter axiom if for any finite sequences (D+
i , x

+
i )

k
i=1 ∈ Mk and (D−

j , x
−
j )

l
i=1 ∈ Ml

for all k and l,

max
≻∈L(X)

∑
i

ρ≻(D+
i , x

+
i )−

∑
j

ρ≻(D−
j , x

−
j ) ≥

∑
i

ρ(D+
i , x

+
i )−

∑
j

ρ(D−
j , x

−
j ).

Theorem E.5. Suppose M ⊆ {(D, x) ∈ 2X × X | x ∈ D}. A stochastic choice

function ρ defined on M is RU-rationalizable if and only if it satisfies the Gener-

alized McFadden-Richter axiom.59

Proof. First suppose that there exists sequences (D+
i , x

+
i )

k
i=1 ∈ Mk and (D−

j , x
−
j )

l
i=1 ∈

Ml for all k and l such that max≻∈L(X)

∑
i ρ

≻(D+
i , x

+
i )−

∑
j ρ

≻(D−
j , x

−
j ) <

∑
i ρ(D

+
i , x

+
i )−∑

j ρ(D
−
j , x

−
j ). Then for any ρµ ∈ Pr = co ({ρ≻ |≻∈ L}) it follows that

∑
i ρ

µ(D+
i , x

+
i )−∑

j ρ
µ(D−

j , x
−
j ) <

∑
i ρ(D

+
i , x

+
i )−

∑
j ρ(D

−
j , x

−
j ). We conclude that ρ /∈ Pr.

To show the other direction, suppose that ρ /∈ Pr. Since Pr is compact and

convex then by the separating hyperplane theorem there exists ν : M → R such

59Another way to write a McFadden-Richter type axiom for our setup is to only consider pos-
itive sequences but allow terms of the form ρ(D, aD) = 1−

∑
x∈D∩X̃ ρ(D,x). The interpretation

is that ρ(D, aD) is the total frequency of unobservable alternatives in D. This approach also
leads to adding the negative terms. However, this approach leads to a weaker characterization of
RUM as it ignoring possible restrictions between ρ(D, aD) and ρ(E, aE) for different choice sets.
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that ν · ρµ < ν · ρ for all ρµ ∈ Pr. In particular,

max
≻∈L(X)

∑
(D,x)∈M

ν(D, x)ρ≻(D, x) <
∑

(D,x)∈M

ν(D, x)ρ(D, x). (32)

Now by density of the rationals and since the maximum is over a finite set, ν can

be taken to be rational valued. Then by multiplying by a large positive integer, ν

can also be taken to be integer valued and still satisfy the inequality. Finally, we

obtain the result by letting (D, x) appear ν(D, x) times in (D+
i , x

+
i )

k
i=1 ∈ Mk if it

is positive and ν(D, x) times in (D−
i , x

−
i )

l
j=1 ∈ Ml if it is negative. □

This characterization is similar to the classical Mcfadden-Richter axiom, but

it allows negative signs in the sum. If the dataset satisfies the following condition,

then we can focus on positive sequences: For each D ∈ D, we can observe ρ(D, x)

for all x ∈ D. Thus, ∑
x∈D s.t.(D,x)∈M

ρ(D, x) = 1. (33)

Theorem E.6. Let M ⊆ {(D, x) ∈ 2X×X | x ∈ D}. Suppose that if (D, x) ∈ M,

then (D, y) ∈ M for all y ∈ D. A stochastic choice function ρ defined on M is

RU-rationalizable if and only if it satisfies the McFadden-Richter axiom.

The necessity of the proof does not change. In the sufficiency part of proof

above, we showed the existence of ν satisfying (32). Let s = −min(D,x)∈M ν(D, x).

Then define v∗ by v∗(D, x) = v(D, x) + s for all (D, x) ∈ M. Note that ν∗

is a nonnegative vector and for any stochastic choice function for each D ∈ D,∑
x∈D s.t. (D,x)∈M ν∗(D, x)ρ(D, x)−

(∑
x∈D s.t. (D,x)∈M ν(D, x)ρ(D, x)

)
= s, where

the last equality holds by (33). Thus, (32) holds with ν∗ in the place of ν. The

rest of the proof is the same.

One drawback that this characterization shares with McFadden and Richter

(1990) but not the characterization in Theorem 3.2 is that it has an infinite number

of inquealities to test, some of them being redundant. In the following we show

that these redundancies are inherent to the approach.
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E.4 Redundancy in the McFadden and Richter (1990) Ap-

proach

The conditions of McFadden and Richter (1990) and our generalization involve an

infinite number of sequences and some of the conditions are redundant. In this

section, we further clarify the relationship between our approach and the approach

taken by McFadden and Richter (1990). The main message is that the approach

by McFadden and Richter (1990) contain redundancy in an essential way, unlike

the BM polynomials. 60

Notice in Definition E.4, the same (D, x) ∈ M may appear arbitrarily many

times in the sequences (D+
i , x

+
i )

k
i=1 ∈ Mk and (D−

j , x
−
j )

l
i=1 ∈ Ml . Thus, the

number of sequences to be tested in the Generalized McFadden-Richter Axiom

is infinite, although there are finitely many pairs (D, x) ∈ M. McFadden and

Richter (1990) discuss the difficulty of providing an upper bound on the number of

allowable repetitions needed for their axiom to fully characterize RUM. They prove

that sequences containing repetitions must be tested in general. In the following

section, we show how Theorem 3.2 can provide an upper bound on the number of

required repetitions. We then show that while limiting the number of repetitions

does make the number of inequalities to test finite, the number of inequalities to

test is much larger than our independent conditions obtained in Theorem 3.2 and

therefore contains a large amount of redundancy.

We first show the following remark

Remark E.7. The inequality conditions (i) of Theorem 3.2 can be written as the

Generalized McFadden-Richter Axiom with no repetitions.

For each (E, y) such that y ∈ E, define K(E,y) ∈ RM by

K(E,y)(D, x) =


−1 if y = x and D ⊇ E and |D \ E| is even,
+1 if y = x and D ⊇ E and |D \ E| is odd,
0 otherwise.

60In other words, if one removes all redundancy from the results by McFadden and Richter
(1990), such results should reduce to Falmagne (1978) for the case of complete datasets and our
results for the case of incomplete datasets (in our sense).
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For any ρ ∈ P , we have K(E,y) · ρ = −K(ρ, E, y). For each (E, y), define sequences

(D+
i , x

+
i )

k
i=1 ∈ Mk and (D−

j , x
−
j )

l
i=1 ∈ Ml so that each (D, x) appears exactly

once in (D+
i , x

+
i )

k
i=1 if K(E,y)(D, x) = 1 and exactly once in (D−

j , x
−
j )

l
i=1 ∈ Ml if

K(E,y)(D, x) = −1. Thus
∑

i ρ(D
+
i , x

+
i )−

∑
j ρ(D

−
j , x

−
j ) = −K(ρ, E, y) for all ρ.

Notice then that

max
≻∈L(X)

∑
i

ρ≻(D+
i , x

+
i )−

∑
j

ρ≻(D−
j , x

−
j ) = max

≻∈L(X)

∑
(D,x)∈M

−K(ρ≻, E, y) = 0,

the Generalized McFadden-Richter Axiom for this sequence is equivalent toK(ρ, E, y) ≥
0. In particular, in the case of complete data, it is sufficient to only consider se-

quences without repetition.

We can do something similar with condition (ii) in Theorem 3.2.

Remark E.8. The inequality conditions (ii) of Theorem 3.2 are also implied by

the Generalized McFadden-Richter Axiom.

For each essential test collection C define νC(D, x) as the coefficient on ρ(D, x)

in the polynomial below:

δ′ρ(C) ≡
∑

(D,x):D∈C,D∪x ̸∈C,
(D∪x,x)∈M

K(ρ,D ∪ x, x)−
∑

(E,y):E ̸∈C,E∪y∈C,
(E∪y,y)∈M

K(ρ, E ∪ y, y). (34)

Note that (34) is equivalent to the left hand-side of condition (ii) of Theorem 3.2.

The value of (34) coincided with δρ(C) defined in (10) when C is an essential test

collection.61

Define sequences (D+
i , x

+
i )

k
i=1 ∈ Mk and (D−

j , x
−
j )

l
i=1 ∈ Ml so that each

(D, x) appears exactly −νC(D, x) in (D+
i , x

+
i )

k
i=1 if νC(D, x) < 0 and exactly

νC(D, x) many times in (D−
j , x

−
j )

l
i=1 ∈ Ml if νC(D, x) > 0. Then

∑
i ρ(D

+
i , x

+
i ) −∑

j ρ(D
−
j , x

−
j ) = −δ′ρ(C) for all ρ. As shown in the proof of Theorem 3.2, δ′ρ≻(C) ≥ 0

for all ≻; and furthermore there exists ≻ such that δ′ρ≻(C) = 0 by the fact that

δ′ρ(C) = 0 is a facet defining inequality and the vertices of the polytope consist of

61When C is an essential test collection, we have X ̸∈ C and ∅ ̸∈ C.
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ρ≻s. Thus

max
≻∈L(X)

∑
i

ρ≻(D+
i , x

+
i )−

∑
j

ρ≻(D−
j , x

−
j ) = max

≻∈L(X)

∑
(D,x)∈M

−δ′ρ≻(C) = 0

and therefore the Generalized McFadden-Richter Axiom for this sequence is equiv-

alent to condition (ii) for the essential test collection C.

Remark E.9. We have thus shown our conditions can be written as the Gener-

alized McFadden Richter Axiom (by selecting sequences in a very particular way);

however the converse is not true. While our conditions are non-redundant, all

of the sequences in the Generalized McFadden Richter Axiom apart from those

corresponding to our conditions are redundant.

See Figure 7 for the illustration. Our conditions contain only the blue facet

defining hyperplanes, while the Generalized McFadden Richter Axiom contain all

non-facet defining red hyperplanes.

To get an idea of how much redundancy there is in the McFadden-Richter

axiom (as well as its generalization), consider the following counting argument.

Suppose D = 2X \ ∅. For finite sequences in M with no repetitions, each element

of M either appears as a positive, negative, or does not appear in the sequence.

Thus (up to reordering) there are 3|M| inequalities without repetitions. This is at

least 22
|X|−1 as the lower bound of |M| is 2|X| − 1. Note that this is a lower bound

for the number of sequences without repetitions. Since repetitions are necessary

when the datasets are incomplete, this lower bound is very small one.

We now obtain an upper bound for the number of inequalities in condition

(ii) of Theorem 3.2. The number of inequalities in condition (i) of Theorem 3.2 is

|M|, which is bounded by 2|X| × |X̃|. To get an upper bound for the number of

inequalities in condition (ii) of Theorem 3.2, notice that the number of essential

test collections is less than 2|X̃|22
|X∗|

= 22
|X∗|+|X̃| since there are less than 2|X̃|

options for A and less than 22
|X∗|

options for E . Thus, the upper bound for the

number of inequalities in condition (ii) is 22
|X∗|+|X̃| + 2|X||X̃|. We have

22
|X∗|+|X̃| + 2|X||X̃| = 2 2|X

∗|+|X̃|
(
1 + |X̃| 2 |X∗|−2|X

∗|
)
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as |X| = |X̃|+ |X∗|. For |X∗| ≥ 2 we have |X∗| − 2|X
∗| ≤ −2, thus 2 |X∗|−2|X

∗| ≤ 1
4
.

Hence

1 + |X̃| 2 |X∗|−2|X
∗| ≤ 1 +

|X̃|
4

≤ 2 |X̃|−1,

where the last inequality holds because |X̃| ≥ 2. Thus an upper bound is

22
|X∗|+|X̃| + 2|X||X̃| = 2 2|X

∗|+|X̃|
(
1 + |X̃| 2 |X∗|−2|X

∗|
)
≤ 2 2|X

∗|+2|X̃|−1

Therefore the ratio is at least

22
|X|−1

22|X
∗|+2|X̃|−1

= 22
|X|−2|X

∗|−2|X̃| ≥ 22
|X|−2

for |X̃| ≥ 2 and |X∗| ≥ 2. Summarizing the above argument, we have the following:

Remark E.10.

#(inequalities of Generalized MR axiom without repetitions)

#(inequalities of Theorem 3.2)
≥ 22

|X|−2

for |X̃| ≥ 2 and |X∗| ≥ 2. This illustrates that even when restricting attention to

non-repeating sequences, the number of inequalities required for the Generalized MR

axiom is substantially larger than the number of essential test collections identified

in Theorem 3.2.

The remaining question is how many repetitions are required to be sufficient

in characterizing RUM. By using Theorem 3.2, we will obtain a lower bound for

the number of repetitions. By the previous observation, this is a lower bound on

the number of times that any given ρ(D, x) appears in condition (ii) of Theorem

3.2. We first construct a test collection. Take arbitrary A = X̃ \ b for some b ∈ X̃.

Now take E ⊆ 2X
∗
that contains all subsets of X∗ with at least |X∗|/2 elements.

Note then that {A ∪ E|E ∈ E} is an essential test collection.

Now take a ∈ A. We wish to count how many time ρ(X, a) appears in the

inequality corresponding to the test collection. First, notice K(ρ,A ∪ E, a) only

appears as an inflow in the inequality. Now, the sign of ρ(X, a) alternates in

K(ρ,A ∪ E, a) with respect to the size of E. Thus it appears (up to a change
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of sign)
∑

E∈E(−1)|E| =
∑m/2

k=0(−1)k
(
m
k

)
times. This equals (−1)m/2

(
m−1
m/2

)
where

m = |X∗|. Now, it is well-known that
(
n
k

)
≥ (n/k)k for all n and k, Thus,(

|X∗| − 1

|X∗|/2

)
≥ 1

|X∗|

(
|X∗|
|X∗|/2

)
≥ 2|X

∗|/2

|X∗|
.

Thus, we have the following:

Remark E.11. Let M = {(D, x) ∈ 2X × X̃|x ∈ D}. Then, in order for the

Generalized McFadden-Richter axiom to be sufficient for RU-rationalizability, we

must test the axiom for sequences containing at least 2|X
∗|/2

|X∗| repetitions.

Remark E.10 and E.11 together demonstrate that the number of inequalities

in Theorem 3.2 is significantly smaller than the number of inequities required in

McFadden-Richter approach.

E.5 Simplification of bounds of unobservable choice prob-

abilities when D = 2X \ ∅

In this section, we assume that D = 2X \ ∅, we provide further simplification of

bounds of unosbservavle choice frequencies.

Corollary E.12. Let D = 2X \ ∅. For (D, x) ̸∈ M, the upper bound is obtained

by

ρ(D, x) = max
{r(D\x,D)}(D,x)̸∈M

∑
A′:A⊆A′⊆X̃

∑
E′:E⊆E′⊆X∗

r(A′ ∪ E ′ \ x,A′ ∪ E ′) (35)

subject to

∑
y∈E′

r(A′ ∪ E ′ \ y, A′ ∪ E ′)−
∑

y∈X∗\E′

r(A′ ∪ E ′, A′ ∪ E ′ ∪ y) = δρ(A
′ ∪ E ′) (36)

for all A′ ⊆ X̃ and E ′ ⊆ X∗. The lower bound ρ(D, x) solves a similar problem

with a min replacing the max.

Remark E.13.
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• The form of (36) implies that for A′, A′′ ⊆ X̃, E ′, E ′′ ⊆ X∗, and y ∈ E ′, z ∈
E ′′, if A′ ̸= A′′, then variables r(A′∪E ′\y, A′∪E ′) and r(A′′∪E ′′\z, A′′∪E ′′)

are independent; either of them does not restrict the other via the constraints

(36).

• This means that each constraint can be considered separately.

• Therefore, we can optimize the inner sum of (35) separately. That is, the

maximum value of the problem is equivalent to the sum of the maximum

values of the following problems for all A′ such that A ⊆ A′ ⊆ X̃ :

max
{r(D\x,D)}(D,x)̸∈M

∑
E′:E⊆E′⊆X∗

r(A′ ∪ E ′ \ x,A′ ∪ E ′) (37)

subject to (36) for all E ′ ⊆ X∗.

• A large linear program (35) is now decomposed into smaller problems (37),

which improves the computational efficiency, especially when A is large.

E.6 Implications to statistical testing of rationality

Theorem 3.2 establishes that following two representations of the set of random

utility polytope are equivalent: co.{ρ≻ |≻∈ L} and

{
ρ ∈ RM

+ | ρ satisfies the inequalities in (i) and (ii) of Theorem 3.2
}
.

The first representation characterizes an RU-rationalizable dataset as the con-

vex hull of a finite set of points. In convex geometry, this is known as a V -

representation. The second representation expresses the polytope via its facet

defining inequalities, commonly referred to as an H-representation.

For testing whether a given incomplete dataset is RU-rationalizable, the H-

representation is generally more practical, as it requires only checking for a single

violated inequality to reject rationalizability. In contrast, the V -representation in-

volves searching the typically high-dimensional space ∆(L) for a supporting weight,
making it computationally intensive.
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A key challenge with the H-representation is that a closed form expres-

sion remains unknown for arbitrary patterns of missing data, whereas the V -

representation follows directly from the definition of rationalizability. Conse-

quently, empirical studies on testing RU-rationalizability, such as Kitamura and

Stoye (2018) and Dean, Ravindran, and Stoye (2022), rely on the V -representation,

trading computational cost for broader applicability.

Our contribution in Theorem 3.2 is to explicitly enumerate all facet defin-

ing inequalities for a specific structure of data incompleteness. Once the H-

representation is obtained, rationality testing reduces to verifying inequality con-

straints. Statistical inference can then proceed using standard techniques for

moment inequalities (see Andrews and Soares (2010), Canay, Illanes, and Velez

(2023)), though assessing the performance of such methods is beyond the scope of

this paper.
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E.7 Block-Marschak Polynomial Values for the Motivating

Example in Section 1.1

In this section, we provide a table that gives all of the observable Block-Marschak

polynomial values for ρ of the example in Table 1 of Section 1.1 for ε = 0.

K(ρ,D, x) :

D
x

a b (c) (d)

{a} 0 − − −
{b} − 0 − −
{a, b} 0 1/3 − −
{a, c} 1/6 − ? −
{a, d} 1/6 − − ?

{b, c} − 1/6 ? −
{b, d} − 1/6 − ?

{c, d} − − ? ?

{a, b, c} 1/6 0 ? −
{a, b, d} 1/6 0 − ?

{a, c, d} 1/6 − ? ?

{b, c, d} − 1/6 ? ?

{a, b, c, d} 1/6 1/6 ? ?

E.8 Details of calibrated dataset

Recall that L is the set of linear orders on X = {0, 1, 2, 3, 4}. For a probability

distribution µ over L, let ρ(D, x | µ) be the choice probability of x out ofD induced

by µ, that is,

ρ(D, x | µ) := µ ({≻∈ L | x ≻ y for all y ∈ D \ x}) .

Given a complete dataset ρ, we shall find an RU-rationalizable dataset that
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resembles ρ. We solve the following problem:

µ̂ ∈ argmin
µ∈∆(L)

∑
x∈D∈D

(ρ(D, x | µ)− ρ(D, x))2 ,

and we use the calibrated choice data (ρ(D, x | µ̂))x∈D∈D in the analysis in Section

4. Table 2 summarizes the calibrated probabilities for the lottery dataset used in

the analysis of Section 4.

Table 2: Calibrated choice data ρ

D
x

0 1 2 3 4

{0, 1} 0.434996 0.565004 - - -
{0, 2} 0.171289 - 0.828711 - -
{0, 3} 0.119875 - - 0.880125 -
{0, 4} 0.108795 - - - 0.891205
{1, 2} - 0.444959 0.555041 - -
{1, 3} - 0.203263 - 0.796737 -
{1, 4} - 0.179475 - - 0.820525
{2, 3} - - 0.475196 0.524804 -
{2, 4} - - 0.307597 - 0.692403
{3, 4} - - - 0.453832 0.546168

{0, 1, 2} 0.162682 0.291693 0.545626 - -
{0, 1, 3} 0.119875 0.156422 - 0.723703 -
{0, 1, 4} 0.091033 0.121704 - - 0.787263
{0, 2, 3} 0.064422 - 0.431887 0.503691 -
{0, 2, 4} 0.066709 - 0.295601 - 0.63769
{0, 3, 4} 0.053548 - - 0.453832 0.49262
{1, 2, 3} - 0.198698 0.289444 0.511858 -
{1, 2, 4} - 0.147176 0.216616 - 0.636208
{1, 3, 4} - 0.102122 - 0.395562 0.502315
{2, 3, 4} - - 0.27787 0.251982 0.470148

{0, 1, 2, 3} 0.064422 0.151858 0.280029 0.503691 -
{0, 1, 2, 4} 0.066709 0.106637 0.215865 - 0.610789
{0, 1, 3, 4} 0.053548 0.08145 - 0.395562 0.469439
{0, 2, 3, 4} 0.046842 - 0.265874 0.251982 0.435302
{1, 2, 3, 4} - 0.098786 0.192909 0.251982 0.456323

{0, 1, 2, 3, 4} 0.046842 0.078113 0.192158 0.251982 0.430904
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