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1 Introduction

The study of stochastic choice is appealing in two ways. First, stochastic choice data

are exactly the type of data we observe in empirical analysis. Second, the theory of

stochastic choice contains interesting mathematical results that are distinct from those in

deterministic choice theory.

However, it can be difficult for a student to gain a unified understanding of the lit-

erature on stochastic choice. This difficulty arises from the fact that the literature has

developed independently across three different disciplines: psychology, decision theory,

and mathematics. In fact, the axiomatization of random utility models was first provided

by Falmagne (1978) in mathematical psychology. Without knowing the result, Barbera

and Pattanaik (1986) obtained the same axiomatization in economics. Independently,

McFadden and Richter (1990) proposed an alternative axiomatization. (They obtained

the result in 1970s but the result is published in 1990).

In this note, we will review the classical results achieved by Block and Marschak

(1960), Falmagne (1978), and Mcfadden and Richter (1990). Although these results have

been regarded as independent of each other, I provide a new unified geometric way to

understand these classical results.

2 Random choice function

Let X be a finite set. X is the set of outcomes. Let D ≡ 2X \ {∅}.
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Definition 1. A function ρ : D×X → [0, 1] is called random choice function if
∑

x∈D ρ(D, x) =

1 and ρ(D, x) = 0 for any x �∈ D. The set of random choice functions is denoted by P.

ρ(D, x) is the probability that an element x is chosen from a choice set D. Let

T ≡ |D| × |X|. Note that |D| = 2|X| − 1. A random choice function ρ is an element of

RT .

3 Random utility model

Let V be the set of all functions v : X → R. Notice that v is |X| dimensional real vector.

Let V be the Borel algebra of V . Denote the finitely additive probability measure by

Δ(V ).

Definition 2. A random choice function ρ is called random utility function if there exists

a probability measure μ ∈ Δ(V) such that for all (D, x) ∈ D ×X,

ρ(D, x) = μ(v ∈ V|v(x) ≥ v(D)).

Remark 1. Suppose that a random choice function ρ is random utility function with μ.

Then for any x, y ∈ X such that μ(v ∈ V|v(x) = v(y)) = 0.

Proof. For any x, y ∈ X

1 = ρ({x, y}, x) + ρ({x, y}, y)

= μ(v ∈ V|v(x) ≥ v(y)) + μ(v ∈ V|v(y) ≥ v(x))

= μ(v ∈ V|v(x) ≥ v(y)) + μ(v ∈ V|v(y) > v(x)) + μ(v ∈ V|v(y) = v(x))

= μ(v ∈ V|v(x) ≥ v(y) or v(y) > v(x)) + μ(v ∈ V|v(y) = v(x))

= 1 + μ(v ∈ V|v(y) = v(x)).

So μ(v ∈ V|v(y) = v(x)) = 0. �

Remark 2. By the finite additivity of μ and the finiteness of X, the above remark implies

that the measure of utilities which allows tie is zero.
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3.1 Random ranking model

Let Π be the set of bijection between X → {1, . . . , |X|}. If π(x) = k, I interpret that x

is |X|+ 1− k th best element of X with respect to π. So if π(x) > π(y), then x is better

than y with respect to π. For all (D, x) ∈ D × X if π(x) > π(y) for all y ∈ D \ {x}, I

write π(x) ≥ π(D). There are |X|! elements in Π.

I denote the set of probability measures over Π by Δ(Π). Since Π is finite, Δ(Π) ={
(ν1, . . . , ν|Π|) ∈ R

|Π|
+

∣∣∑|Π|
i=1 νi = 1

}
.

Definition 3. A random choice function ρ is called random ranking function if there

exists a probability measure ν ∈ Δ(Π) such that for all (D, x) ∈ D ×X

ρ(D, x) = ν(π ∈ Π|π(x) ≥ π(D)).

The set of random utility functions is denoted by Pr.

Remark 3. For any random choice function ρ, ρ is a random ranking function if and

only if ρ is a random utility function

Proof. Suppose that ρ is a random utility function to show that ρ is also a random

ranking function. For any π ∈ Π, define

ν(u) = μ(v ∈ V|v(x) > v(y) if and only if π(x) > π(y)).

Then for any (D, x) ∈ D ×X,

ρ(D, x) = μ(v ∈ V|v(x) > v(D)) = ν(π ∈ Π|π(x) > π(D)).

To show the converse suppose that ρ is random ranking function to show that ρ is also

a random utility function. For any v ∈ V,

μ(v) =

{
ν(π) if v = π,

μ(v) = 0 otherwise.

Then for any Borel set B define μ(B) =
∑

v∈B∩Π μ(v). This is well defined because Π is

finite. Then for any (D, x) ∈ D ×X,

ρ(D, x) = ν(π ∈ Π|π(x) > π(D)) = μ(v ∈ V|v(x) > v(D)).

�
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4 Axiomatization of random utility model by Block-

Marschak polynomials

Axiom 1. (Regularity) For any D,E ∈ D such that x ∈ D ⊂ E, ρ(D, x) ≥ ρ(E, x).

Remark 4. (i) A random utility function ρ satisfies Regularity. (ii) For any D ∈ D such

that x ∈ D and any z, z′ ∈ X \D,

ρ(D, x)−
[
ρ(D ∪ z, x) + ρ(D ∪ z′, x)

]
+ ρ(D ∪ {z, z′}, x) ≥ 0

Proof. (i) holds because

ρ(D, x) = ν(π ∈ Π|π(x) ≥ π(D)) ≥ ν(π ∈ Π|π(x) ≥ π(D) & π(x) > π(E \D)) = ρ(E, x).

To show (ii) holds let U1 = {π ∈ Π|π(x) ≥ π(D)}, U2 = {π ∈ Π|π(x) ≥ π(D) & π(x) >

π(z)}, U ′
2 = {π ∈ Π|π(x) ≥ π(D) & π(x) > π(z′)}, and U3 = {π ∈ Π|π(x) ≥

π(D) & π(x) > π(z) & π(x) > π(z′)}. Then, U3 = U2 ∩ U ′
2. Moreover, ((U2 ∪ U ′

2) \ (U2 ∩

U ′
2)) ⊂ U1. So ν(U1)−[ν(U2)+ν(U ′

2)]+ν(U3) = ν(U1)−[ν(U2)+ν(U ′
2)]+ν(U2∩U

′
2) ≥ 0. �

Definition 4. For any ρ ∈ P and (D, x) ∈ D ×X such that x ∈ D,

K(ρ,D, x) =
∑

E:D⊂E

(−1)|E\D|ρ(E, x).

The number K(ρ,D, x) is called a Block-Marschak polynomial. Block and Marschak

(1960) shows that if ρ is a random utility function then the polynomials are nonnegative.

Falmagne (1978) shows that the nonnegativity condition is sufficient.

4.1 Necessity of the nonnegativity of B-S polynomials

The following proof is by Barberá and Pattanaik (1986). The proof is based on the

inclusion-exclusion formula.

Proposition 1. For any real valued function h and r defined on a finite set, if

r(T ) =
∑

U :T⊂U

h(U) (1)

then

h(S) =
∑

T :S⊂T

(−1)|T\S|r(T ). (2)
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Proof. By substituting r(T ) by (1), the right hand side of (2) is∑
T :S⊂T

(−1)|T\S|
∑

U :T⊂U

h(U).

For each U , h(U) appears once for each T such that S ⊂ T ⊂ U with sign (−1)|T\S|. For

each i ∈ {0, . . . , |U \ S|}, the number of T such that S ⊂ T ⊂ U and |T \ S| = i is(
|U \ S|

i

)
.

Therefore, the coefficient on h(U) is

|U\S|∑
i=0

(−1)i
(
|U \ S|

i

)
.

If U = S, the coefficient is (−1)0
(
0
0

)
= 1. For any U such that U �= S, the coefficient is 0

from binomial formula.

Remember that the binomial formula is (x + y)|U\S| =
∑|U\S|

i=0

(
|U\S|

i

)
xiy|U\S|−i. By

substituting x = −1 and y = 1,

|U\S|∑
i=0

(−1)i
(
|U \ S|

i

)
= (−1 + 1)|U\S| = 0.

Therefore, the coefficient is 1 only for h(S) and 0 for any h(U) such that U �= S. Thus,

the right hand side of (2) is h(S). �

Proposition 2. If ρ is a random utility function represented by ν ∈ Δ(Π), then for any

(D, x) such that x ∈ D,

K(ρ,D, x) = ν{π ∈ Π|π(Dc) > π(x) ≥ π(D)}.

Proof. Fix a nonempty subset D of X and choose an arbitrary element x from D.

Define two functions h, r : 2X → R

h(E) = ν(π|π(Ec) > π(x) ≥ π(E)),

r(E) = ρ(E, x).

Apply the inclusion and exclusion formula with the two functions h and r. Notice that

{π|π(x) ≥ π(D)} =
⋃

E:D⊂E

{π|π(Ec) > π(x) ≥ π(E)}. (3)
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Moreover, the sets in the right hand side are disjoint. Thus

r(D) = ρ(D, x) = ν(π|π(x) ≥ π(D)) =
∑

E:D⊂E

ν(π|π(Ec) > π(x) ≥ π(E)) =
∑

E:D⊂E

h(E).

where the third equality holds by (3). By the inclusion-exclusion formula,

ν{π ∈ Π|π(Dc) > π(x) ≥ π(D)} ≡ h(D) =
∑

E:D⊂E

r(E)(−1)|E\D| ≡
∑

E:D⊂E

ρ(E, x)(−1)|E\D|,

where the last term equals to K(ρ,D, x). �

4.2 Falmagne (1978): Sufficiency of nonnegativity of B-S poly-

nomials

Theorem 1. (Falmagne (1978)) For any ρ ∈ P, ρ is a random utility function if and

only if K(ρ,D, x) ≥ 0 for any D ⊂ X and x ∈ D.

Lemma 1. For any subset D of X,

(i) K(ρ,D, x) = ρ(D, x)−
∑

E:E�D K(ρ, E, x).

(ii)
∑

x∈D K(ρ,D, x) =
∑

x∈Dc K(ρ,D ∪ {x}, x).

Proof. Step 1: (i). For each F such that F � D, we show that ρ(F, x) appears once

with the sign (−1)|F\D| in the term −
∑

E:E�D K(ρ, E, x). Therefore, the right hand side

coincides with the definition of K(ρ,D, x).

Fix F such that F � D. In the term
∑

E:E�D K(ρ, E, x), ρ(F, x) appears once for

each E such that F ⊃ E � D with sign (−1)|F\E|. Suppose that |F \ E| = i, then the

number of such E must be the same as
(
|F\D|

i

)
. Since E �= D, we have i < |F \D|. Thus

the coefficient of ρ(F, x) is

|F\D|−1∑
i=0

(
|F \D|

i

)
(−1)i =

|F\D|∑
i=0

(
|F \D|

i

)
(−1)i − (−1)|F\D| = −(−1)|F\D|.

Step 2: (ii). The left hand side of (ii) becomes:∑
x∈D K(ρ,D, x) =

∑
x∈D

∑
E:E⊃D(−1)|E\D|ρ(E, x)

=
∑

E:E⊃D(−1)|E\D|
∑

x∈D ρ(E, x)

=
∑

E:E⊃D(−1)|E\D|
(
1−

∑
y �∈D ρ(E, y)

)
=

∑
E:E⊃D(−1)|E\D| −

∑
E:E⊃D(−1)|E\D|

∑
y �∈D ρ(E, y)

= −
∑

E:E⊃D(−1)|E\D|
∑

y �∈D ρ(E, y),
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