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Application: Who will Use a New Train Line?

Bay Area Rapid Transit opened in 1973

https://www.youtube.com/watch?v=O_eCgv6j3-s

BART was the epicenter of modern structural modeling

https://www.youtube.com/watch?v=O_eCgv6j3-s


Application: Who will Use a New Train Line?

Before BART opened, D. McFadden (then a prof at UC Berkeley)

was asked to predict BART ridership.

Q: How to predict BART ridership with data prior to BART

opening?



Requirements for a Counterfactual Prediction Method

McFadden'd like to develop a general method that

1. predicts choice behavior in counterfactual settings

→ needs a �theory" of how choices change in counterfactuals

2. can be used only with limited real-world data

� each choice-maker makes only a small number of choices

� characteristics of alternatives & individuals are only

incompletely known

3. is computationally practical (even in 1970s)



Prediction by Revealed Preference over Characteristics 1/2

The Data:

I Information about characteristic of each transportation method

such as price, speed, etc.

� Let K be the number of characteristic variables.

� Each transportation method corresponds to an element of

<K .
� For example, xcar = (price of car, speed of car, etc) ∈ <K .
� Let X ⊂ <K be the set of all alternatives (represented as

characteristic vectors)

I Consumer's choice data before BART is open:

� How many percentage of people use each of transportation

methods



Random utility: Assumption of individual's behavior

Model:

I Assume utility of alternative i is

u(i) = β · x(i) + ε(i),

where β captures individual's preference unknown to researcher;

ε is random component of utilities unknown to researcher.

I This is called random utility model.

I Each individual chooses an alternative i from choice set C if

u(i) > u(j) for all j ∈ C \ {i}
I Market share of alternative i :

ρ(C , i) = Prob(β ·x(i)+ε(i) > β ·x(j)+ε(j) for all j ∈ C \{i})



Canonical Example: Logit

De�nition 1 (Type I Extreme Value (Gumbel) Distribution)

Cumulative Density Function F (ε) ≡ e−e
−ε

Logit Assumption

ε(i) ∼iid Type I Extreme Value (Gumbel) Distribution F (ε)

Theorem 2 (Logit Choice Probabilities)

Market share of alternative i :ρ(C , i) =
exp(β · x(i))∑
j∈C exp(β · x(j))



Estimation

I Estimate β by using maximum likelihood

I Add Bart to choice set C by specifying

x(bart) = (price of bart, speed of bart, etc) ∈ <K .

I Calculate

Market share of bart : ρ(C , bart) =
exp(β · x(i))∑

j∈C∪{bart} exp(β · x(j))



Result

Ex ante predictions match ex post reality well!



Result



Result

I The same methods has been now used by policymakers &

researchers.

I Researchers use parametric discrete choice models to describe

choice behavior by

� consumers over products

� students over schools

� patients over health providers



Underling theoretical model: Random Utility Model

I X : a �nite subset of RK (Set of all products)

� K : the number of explanatory variables.

I D ⊂ 2X \ {∅} (Set of choice sets)

I A stochastic choice ρ is a mapping on D such that for any

menu D ∈ D, ρ (D, ·) is a probability distribution over D.

� ρ(D, x) is the probability that x is chosen from D.

(market share)



Random Utility Model

I Π: the set of rankings (i.e., strict preference relations) on X .

� |Π| = |X |!
I If π(x) > π(y), then x is better than y with respect to π.

I For any ranking π ∈ Π, de�ne a stochastic choice function ρπ

by

ρπ(D, x) =

{
1 if π(x) ≥ π(y) for all y ∈ D,

0 otherwise.



Random Utility Model

De�nition 3

A stochastic choice function ρ is called a random utility function if

there exists a probability measure ν ∈ ∆(Π) s.t.

ρ(D, x) = ν(π ∈ Π|π(x) ≥ π(y) for all y ∈ D).

The set of random utility functions is denoted by Pr .

I Notice that for any random utility model ρ ∈ Pr ,

ρ =
∑
π∈Π

ν(π)ρπ ∈ co.{ρπ|π ∈ Π}.



Geometry

I The set Pr is a polytope co.{ρπ|π ∈ Π}!
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Question (to you)

I What is the geometric structure of Pr?
I The question is mathematically interesting and important to

understand human behavior.



Why this geometric insight is useful?

I Random utility model is standard model to describe true

human behavior but researchers often use more parametric

model such as logit model.

I When can we represent random utility model by using a

generalized version of logit model?





Logit Model

De�nition 4

I A stochastic choice function ρ is called a logit function if there

exists a vector β and η ∈ <X s.t.

ρ(D, x) =
exp(β · x + ηx)∑
y∈D exp(β · y + ηy )

.

I The set of logit functions of degree d with �xed e�ects η is

denoted by Pl (η).



Mixed Logit Model

De�nition 5

I A stochastic choice function ρ is called a mixed logit function

if there exists a probability measure m and η ∈ <X s.t.

ρ(D, x) =

∫
exp(β · x + ηx)∑
y∈D exp(β · y + ηy )

dm(β).

The mixture is over β not over η.

I The set of mixed logit models with �xed e�ects η is denoted by

Pml (η).



Geometry

I For each �xed e�ect η, the set Pml (η) of mixed logit model

with �xed e�ect η is a convex subset of the polytope Pr .

� A logit model is a random utility model

� Integral ≈ convex combination
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Geometry

I For di�erent �xed e�ect η, Pml (η) can be di�erent.

I Q1: Under what condition does
⋃

η∈<X Pml (η) cover Pr?

� Notice that
⋃

η∈<X Pml (η) may not be convex.

I Q2: When the condition is not satis�ed, how large can the

approximation error be?
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Result

X is a�nely independent if and only if any random utility model

can be approximated by a mixed logit model.
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Question (to you)

What is the geometric structure of Pr?
I Adjacency of vertices

I Adjacency of facets
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