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Abstract4

A mixed logit function, also known as a random-coefficient logit function, is an5

integral of logit functions. Necessary and sufficient conditions are provided under6

which a random choice function can be represented as a mixed logit function. The7

axioms are based on the social surplus function proposed by McFadden (1978, 1981).8

9
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1 Introduction11

The purpose of this paper is to provide axiomatizations of the mixed logit model,12

also known as the random-coefficient logit model. The mixed logit model is one of13

the most widely used models in the analysis of discrete choice for studying aggre-14

gated demand across consumers, especially in the empirical literature on marketing,15

industrial organization, and public economics.16

In this paper, the observed behavior is described by a random choice function17

ρ, which assigns to each choice set D a probability distribution over D. The num-18

ber ρ(D,x) is the probability that an alternative x is chosen from a choice set D.19

∗This paper was first presented at the University of Tokyo on July 29, 2017. An earlier version of
this paper was posted on September 15, 2017. See http://www.hss.caltech.edu/content/axiomatizations-
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Li, Jay Lu, and Matt Shum. Jay Lu also read an earlier version of the manuscript and offered helpful
comments. This research is supported by Grant SES1558757 from the National Science Foundation.
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As in empirical analysis, an alternative x is identified by a real vector of explana-20

tory variables of the alternative. The random choice function describes aggregate21

choices across a population of individuals. The aggregate choices are random due22

to unobserved heterogeneity across the individuals.23

The function ρ is called amixed logit function if there exists a probability measure

m such that

ρ(D,x) =

∫

exp(β · p(x))
∑

y∈D exp(β · p(y))
dm(β), (1)

where β · p(x) is a polynomial of x. The probability distribution m captures the24

unobserved heterogeneity across the population of individuals. Each logit function25

in the support of m describes aggregate choices in a subpopulation. This paper26

provides not only an axiomatization of the model (1) but also its special case with27

linear p (i.e., β · p(x) = β · x) and its general case with an arbitrary function u(·) in28

place of a polynomial β · p(·).　29

The first axiom in the paper may be seen as a normative one. To define a30

normative requirement, I consider a representative agent whose random choice is31

described by ρ. Then I compare the representative agent’s random choice with32

deterministically rational choices as benchmarks. As a criterion for the comparison,33

I adopt the concept of the social surplus function proposed by McFadden (1978,34

1981). Given a utility function u of the representative agent, McFadden (1978,35

1981) defines the social surplus, denoted by G(ρ : u), as the expected utility of the36

representative agent whose random choice is described by ρ.137

From our viewpoint as outside observers, the utility function u of the repre-38

sentative agent is unobservable. The axiom requires that no matter which utility39

function the outside observer uses, the social surplus obtained by the representative40

agent’s choice should be larger than the minimum social surplus obtained by deter-41

ministically rational choices. The requirement of the axiom is weak in the sense42

that the axiom does not require that the agent’s random choice dominate the deter-43

ministically rational choices; the axiom only requires that the agent’s random choice44

should be better than the worst deterministically rational choices in terms of the45

social surplus. Theorem 1 in section 3 states that, under an assumption about the46

set of alternatives that can be shown to hold generically, this axiom is necessary and47

sufficient for a random choice function to be represented as a mixed logit function.48

I also provide an alternative axiom, which may be considered as a descriptive49

1See (3) in section 3 for the definition of G.
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one. Since the social surplus is the expected utility obtained by random choice ρ,50

it follows that the social surplus function G(ρ : u) is linear in ρ. This implies that51

the social surplus of a mixed logit function is an average surplus over a population52

of individuals. Consequently, the social surplus must be larger than the smallest53

surplus among the subpopulations (i.e., G(ρ : u) =
∫

G(ρl : u)dm ≥ infρl G(ρl : u)).54

Corollary 1 in section 3.1 states that, under the generic property on the set of55

alternatives, a slightly stronger condition is not only necessary but also sufficient56

for a random choice function to be represented as a mixed logit function.57

In the course of proving the axiomatizations, I have obtained several results58

which could be of interest by themselves. First, generically speaking, any interior59

random utility function can be represented as a convex combination of logit functions60

with polynomials of at most degree d if and only if d is larger than a threshold. The61

threshold can be calculated explicitly from the number of explanatory variables and62

the number of all alternatives.2 See Proposition 1 in section 3 and Corollary 4 in63

section 4 for details.64

Second, in Proposition 2 in section 3, I show that the affine hull of the set of65

random utility functions contains the set of random choice functions. As I show in66

Corollary 6 in section 5, this result together with Proposition 1 implies that any67

interior random choice function is generically represented as an affine combination68

of two mixed logit functions.69

No axiomatic characterizations for the mixed logit model have yet been provided,70

to my knowledge. However, other generalizations of the logit model have been71

axiomatized recently. Gul et al. (2014) axiomatize a model called the complete72

attribute rule, which is similar to the nested logit model. By using a model of73

rational inattention, Matějka and McKay (2015) provide a novel characterization of74

a generalization of the logit model. In a dynamic setup, Fudenberg and Strzalecki75

(2015) axiomatize a generalization of the discounted logit model which incorporates76

a parameter to capture an agent’s costs and benefits of choosing from larger choice77

sets. By using this parameter, their model can succinctly capture both a preference78

for flexibility as well as the phenomenon of choice aversion. Echenique and Saito79

(2015), Ahumada and Ulku (2017), Horan (2018), and Cerreia-Vioglio et al. (2018)80

axiomatize generalizations of the logit model which allow zero-probability choices.81

Moreover, Cerreia-Vioglio et al. (2018) axiomatize another generalization of the82

2To calculate the threshold explicitly, let K be the number of explanatory variables and X be the set
of all alternatives. Then the threshold is a minimal positive integer d such that

(

d+K
K

)

≥ |X |.
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logit model in which the systematic part of utility is time-independent but the83

shock component is time-dependent. This dependence is crucial in quantal response84

equilibrium theory as well as in neuroscience.85

While the papers mentioned above provide different generalizations of the logit86

model, other recent models of random choice have been proposed that are not vari-87

ations of the logit model. For example, Gul and Pesendorfer (2006), Lu (2016), and88

Lu and Saito (2016) axiomatize variations of the random utility model. Fudenberg89

et al. (2015) and Cerreia-Vioglio et al. (2017) axiomatize models in which an agent90

deliberately randomizes choice. See Strzalecki (2018) for a recent extensive survey91

on the literature of random choice.92

In the next section, I introduce the models formally. In section 3, I provide93

the axiomatizations of the mixed logit model. In section 4, I provide results on the94

denseness of the mixed logit model in the random utility model. In section 5, I state95

corollaries and lemmas which I obtain in the course of proving the axiomatizations.96

2 Model97

The set of all alternatives is denoted by X. In the analysis of discrete choice, the98

number of alternatives in a choice set is finite. Since the number of choice sets is99

usually finite, X is finite. An alternative x can be identified by a real vector of100

explanatory variables of x.3 For example, if an alternative is a consumption good,101

the alternative can be identified by its price and various measures of its quality.102

Hence, X is a finite subset of RK , where K is the number of the explanatory103

variables. For each x ∈ X and k ∈ {1, . . . ,K}, I write x(k) to denote the k-th104

element of x.4105

Let D ⊂ 2X \ {∅}. D is the set of choice sets. Notice D can be a proper subset106

of 2X \ ∅.107

Definition 1. A function ρ : D × X → [0, 1] is called a random choice function108

if
∑

x∈D ρ(D,x) = 1 and ρ(D,x) = 0 for any x 6∈ D. The set of random choice109

functions is denoted by P.110

For each (D,x) ∈ D×X, the number ρ(D,x) is the probability that an alterna-111

tive x is chosen from a choice set D. A random choice function ρ is an element of112

3An empirical researcher can include 1 as an explanatory variable if he wants to use a constant term.
4In section 3.2, where I axiomatize a generalization of the mixed logit model, the set X does not have

to be a subset of RK .
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RD×X . The random choice function is the observable choice data in this paper. I113

interpret the random choice function ρ as aggregate choices across individuals. The114

choices are random due to unobserved heterogeneity across individuals.115

Definition 2. A random choice function ρ is called a mixed logit function if there

exists a positive integer d and a probability measure m such that for all (D,x) ∈

D ×X, if x ∈ D, then

ρ(D,x) =

∫

exp(β · pd(x))
∑

y∈D exp(β · pd(y))
dm(β), (2)

where β · pd(x) is a polynomial of at most degree d. Given a positive integer d, the116

function ρ defined by (2) with a measure m is called a mixed logit function with117

polynomials of at most degree d.118

The set of mixed logit functions is denoted by Pml. Given a positive integer d,119

the set of mixed logit functions with polynomials of at most degree d is denoted by120

Pml(d). Thus Pml =
⋃

d∈Z+
Pml(d), where Z+ is the set of positive integers.121

When m is degenerate (that is, m = δβ for some β) in (2), then ρ is called a logit122

function. Given a positive integer d, ρ defined by (2) with a degenerate measure123

m is called a logit function with polynomials of at most degree d. The set of logit124

functions is denoted by Pl. Given a positive integer d, the set of logit functions with125

polynomials of at most degree d is denoted by Pl(d). Note that Pl =
⋃

d∈Z+
Pl(d).126

Given a positive integer d and x ∈ X, the vector pd(x) consists of monomials of127

at most degree d (i.e., higher order terms such as x(k)n where n ≤ d, and interaction128

terms such as
∏K

k=1 x(k)
nk , where

∑K
k=1 nk ≤ d).5 In some results of the paper I129

consider the linear case in which d = 1 (i.e., pd(x) = x). However, in an empirical130

analysis, such a linear relationship may not hold. For example, if an empirical131

researcher is modeling demand for a product in terms of consumers’ income, one132

may find that the income elasticity of demand is not a linear function of the level133

of income. In that case, the researcher may want to include higher order terms of134

income. Moreover, the effect of one explanatory variable often depends on another135

explanatory variable. For example, the effect of income on the elasticity of demand136

may depend on age groups. One way to deal with such dependencies is to include137

an interaction term among explanatory variables, such as income and an index of138

age group.139

5For example, if K = 2 and d = 2, then p(x) = (x(1), x(2), x(1)2, x(1)x(2), x(2)2) where x =
(x(1), x(2)).
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The next result simplifies our analysis.140

Remark 1. For any positive integer d, Pml(d) = co.Pl(d) (i.e., the set of mixed141

logit functions with polynomials of at most degree d is the convex hull of the set of142

logit functions with polynomials of at most degree d).143

The remark implies that Pml = co.Pl (i.e., the set of mixed logit functions equals144

the set of convex combinations of logit functions). Thus, to axiomatize the mixed145

logit model, it is necessary and sufficient to axiomatize the convex hull of the set of146

logit functions.6147

In section 3.2, I axiomatize a generalization of the mixed logit model defined148

with an arbitrary function u ∈ RX in place of polynomials as follows.149

Definition 3. A random choice function ρ is called a general mixed logit function

if there exists a probability measure m on RX such that for all (D,x) ∈ D ×X, if

x ∈ D, then

ρ(D,x) =

∫

exp(u(x))
∑

y∈D exp(u(y))
dm(u). (3)

When m is degenerate (that is, m = δu for some u), then ρ is called a general logit150

function.151

For the axiomatization of the general model above, X need not be a subset of152

finite dimensional real space as long as the number of elements in X is finite.153

In the following, I introduce several definitions. Let Π be the set of bijections154

between X and {1, . . . , |X|}, where |X| is the number of elements of X. If π(x) = i,155

then I interpret x to be the |X| + 1− i-th best element of X with respect to π. If156

π(x) > π(y), then x is better than y with respect to π. An element π of Π is called157

a strict preference ranking (or simply, a ranking) over X. For all (D,x) ∈ D × X158

such that x ∈ D, if π(x) > π(y) for all y ∈ D \ {x}, then I often write π(x) ≥ π(D).159

There are |X|! elements in Π. I denote the set of probability measures over Π by160

∆(Π). Since Π is finite, it follows that ∆(Π) =
{

(ν1, . . . , ν|Π|) ∈ R
|Π|
+

∣

∣

∑|Π|
i=1 νi = 1

}

,161

where R+ is the set of nonnegative real numbers.162

Definition 4. A random choice function ρ is called a random utility function if

there exists a probability measure ν ∈ ∆(Π) such that for all (D,x) ∈ D × X, if

6The result holds as long as the set of alternatives is finite. As mentioned, in the analysis of discrete
choice, the number of alternatives in a choice set is finite by definition. The number of choice sets is
usually finite, so the set of alternatives is usually finite.
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x ∈ D, then

ρ(D,x) = ν(π ∈ Π|π(x) ≥ π(D)).

The probability measure ν is said to rationalize ρ. The set of random utility func-163

tions is denoted by Pr.164

A random utility function is a probability distribution over the strict preference165

rankings over X.7166

Finally, I review essential mathematical concepts. A polyhedron is an inter-167

section of finitely many closed half spaces. A polytope is a bounded polyhedron.168

Equivalently, a polytope is the convex hull of finitely many points.169

The closure of a set C is denoted by cl.C. The affine hull of a set C is the170

smallest affine set that contains C, and it is denoted by aff.C. The convex hull of a171

set C is denoted by co.C.172

The relative interior of a convex set C is an interior of C in the relative topol-173

ogy with respect to aff.C. The relative interior of C is denoted by rint.C. If C174

is not empty, then (i) rint.C is not empty, and (ii) rint.C = {x ∈ C|for all y ∈175

C there exists α ∈ R such that α > 1 and αx + (1 − α)y ∈ C}. (See Theorem 6.4176

in Rockafellar (2015) for the proof.)177

3 Axiomatization of the Mixed Logit Model178

In this section, I provide axiomatizations of the mixed logit model. The first axiom179

in the paper may be seen as a normative one. To define a normative requirement, I180

consider a representative agent whose random choice follows ρ, and thereby compare181

the representative agent’s random choice with deterministically rational choices as182

benchmarks.183

A random choice function ρ′ is said to be deterministically rational if there exists184

a strict preference ranking π ∈ Π such that185

ρ′(D,x) =

{

1 if π(x) ≥ π(D);

0 otherwise.
(4)

7While the function above is often called a random ranking function, a random utility function is
often defined differently–by using the existence of a probability measure µ over utilities such that for all
(D, x) ∈ D×X , if x ∈ D, then ρ(D, x) = µ(u ∈ RX |u(x) ≥ u(D)). Block and Marschak (1960)(Theorem
3.1) prove that the two definitions are equivalent.
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This random choice function ρ′ is denoted by ρπ. The function ρπ gives probability186

one to the best alternative x in a choice set D according to the strict preference187

ranking π. Remember that this is the standard way to define the rationality of a188

deterministic choice function.189

As a criterion for the comparison between the representative agent’s random

choice and the deterministically rational choices, I adopt the social surplus func-

tion proposed by McFadden (1978, 1981). To introduce this concept, consider a

representative agent whose random choice follows ρ.8 Let u(D,x) be the represen-

tative agent’s utility when he chooses x from D (i.e., x is the best alternative in

D). Since ρ(D,x) is the probability that x is chosen from D, the expected welfare

of the representative agent who chooses from D is

∑

x∈D

ρ(D,x)u(D,x).

This is the social surplus of choice set D.190

Notice that the function u depends on choice set D through the conditioning

event that x is the best alternative in D.9 Moreover, the representative agent’s util-

ity could depend on choice set D because the utility itself could be menu-dependent.

(McFadden (2001), Swait et al. (2002), and Rooderkerk et al. (2011) all address the

importance of context dependence for the analysis of discrete choice.) Since the set

D of choice sets may contain multiple elements, I generalize the social surplus as

follows:10

G(ρ : u) ≡
∑

D∈D

∑

x∈D

ρ(D,x)u(D,x). (5)

From our viewpoint, as outside observers, the utility function of the representa-

tive agent is unobservable. However, it is natural to assume that u belongs to the

8See Rust (1994) and Chiong et al. (2016) for papers which use the social surplus functions to study
the welfare of a representative agent in the analysis of dynamic discrete choice.

9To understand the dependency of u on the set D, consider the case of random utility. Then u(D, x) =
E
[

wx + εx
∣

∣wx + εx ≥ wy + εy for all y ∈ D
]

, where wx is the representative agent’s systematic part of
the utility of x and εx is the additive shock to the utility. The function u depends on D through the
conditioning event.

10A careful reader may wonder why the outside observer needs to sum up utilities over D uniformly. It
is possible to introduce weights r over D and define G(ρ : u, r) =

∑

D∈D r(D)
∑

x∈D ρ(D, x)u(D, x). For
each D ∈ D, r(D) can be interpreted as the outside observer’s subjective belief that the representative
agent chooses from D. The axioms in this paper can be generalized easily to include the weights r.
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following set:

U =
{

u ∈ RD×X
+

∣

∣

∣
(i) u(D,x) = 0 if x 6∈ D; (ii) u(D, ·) is not constant on some D

}

,

where R+ is the set of nonnegative real numbers. A utility u(D,x) is nonnegative.191

Moreover if x is not available in D, then u(D,x) is zero, as required in condition192

(i). If a utility function does not satisfy condition (ii), then the social surplus is193

the same for any random choice function. Such a utility function is not useful to194

evaluate random choice functions in terms of the social surplus.11195

The next axiom requires that no matter which utility function u ∈ U the outside196

observer uses, the social surplus obtained by the representative agent’s choice should197

be larger than the minimum social surplus obtained by the deterministically rational198

choices.199

Axiom 1. (Aggregated Stochastic Rationality) For any u ∈ U ,

G(ρ : u) > min
π∈Π

G(ρπ : u). (6)

Aggregated Stochastic Rationality may be seen as a normative axiom. The nor-200

mative requirement of the axiom is weak in the sense that the axiom does not require201

that the agent’s random choice dominate the deterministically rational choices; the202

axiom only requires that the agent’s random choice should be better than the worst203

deterministically rational choices.204

The next theorem shows that Aggregated Stochastic Rationality characterizes205

the mixed logit model. For the sufficiency of the axiom, I need to assume a condition206

on the set of alternatives.12207

Definition 5. The set X of alternatives is said to be in general position if (i) X208

is affinely independent or (ii) there exists k ∈ {1, . . . ,K} such that x(k) 6= y(k) for209

all x, y ∈ X.210

Remember that X is a subset of K-dimensional real space. With respect to211

condition (i), note that if |X| ≤ K + 1, then, generically speaking, X is affinely212

11To see this point, suppose that u does not satisfy condition (ii). Then for each D ∈ D there exists
vD ∈ R such that u(D, x) = vD for any x ∈ D. For any random choice function ρ ∈ P ,

∑

x∈D ρ(D, x) = 1
for each D ∈ D. It follows that G(ρ : u) =

∑

D∈D vD.
12For the axiomatization of the general mixed logit model, I do not need the condition. See Corollary

coro:general in Section 3.2.
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independent. That is, even if X is not affinely independent, adding a small pertur-213

bation to X makes it affinely independent. (For example when K = 2 and X = 3,214

the only case in whichX is not affinely independent is when the points are collinear.)215

Note that condition (i) is similar in spirit to no perfect multicollinearity, which is216

considered to hold generically.13217

On the other hand if |X| > K+1, then X cannot be affinely independent.14 For218

this case, I require that X satisfy condition (ii). Condition (ii) means that there219

exists an index k of an explanatory variable at which the alternatives (i.e., x(k)s)220

are all distinct. Condition (ii) is also satisfied generically in the sense that adding a221

small perturbation to X makes it satisfy condition (ii). Since the observed data are222

inevitably perturbed by measurement error, it is likely that X is in general position.223

Theorem 1. Suppose that X is in general position. A random choice function ρ224

satisfies Aggregated Stochastic Rationality if and only if ρ is a mixed logit function.225

The sufficiency part of the proof can be sketched as follows. (See the appendix226

for the complete proof.) First, I state two propositions which are necessary for the227

axiomatization.228

Proposition 1. For any positive integer d, the set of mixed logit functions with229

polynomials of at most degree d is the relative interior of the set of random utility230

functions (i.e., Pml(d) = rint.Pr) if and only if {pd(x)|x ∈ X} is affinely indepen-231

dent.232

In section 4, I will provide details of Proposition 1. The next proposition char-233

acterizes the affine hull of the set Pr of random utility functions.234

Proposition 2. The affine hull of Pr is

{

q ∈ RD×X
∣

∣

∣
(i)

∑

x∈D

q(D,x) = 1 for any D ∈ D; (ii) q(D,x) = 0 for any D ∈ D, x 6∈ D
}

.

Proposition 2 implies that the set of random choice functions is a subset of the235

affine hull of the set of random utility functions (i.e., P ⊂ aff.Pr).
15

236

13No perfect multicollinearity means that any explanatory variable cannot be represented as an affine
combination of the other explanatory variables. Formally, no perfect multicollinearity requires that
{x(k)}Kk=1

is affinely independent, where x(k) = (x1(k), . . . , x|X|(k)) ∈ R|X|. Note that, on the other

hand, condition (i) means X ≡ {xi}
|X|
i=1 is affinely independent, where xi ∈ RK .

14To see this remember that if a set is affinely independent, then the maximal number of elements
contained by the set is the dimension of the set plus one.

15Note that it is a proper subset because the affine hull contains a vector whose element is negative.
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Given the two propositions above, Theorem 1 can be proved as follows. It

can be shown that the set Pr of random utility functions is a polytope. That is,

Pr = co.{ρπ|π ∈ Π}. Moreover, it follows that there exist a set {ti}
n
i=1 ⊂ RD×X\{0}

and a set {αi}
n
i=1 ⊂ R such that

Pr = ∩n
i=1{q ∈ RD×X |q · ti ≥ αi} ∩ aff.Pr. (7)

As mentioned earlier, Proposition 2 implies that Pr ⊂ P ⊂ aff.Pr. This implication237

and (7) show that Pr = ∩n
i=1{ρ ∈ P|ρ · ti ≥ αi}. It follows that rint.Pr = ∩n

i=1{ρ ∈238

P|ρ ·ti > αi}. Proposition 1 implies that for any positive integer d, Pml(d) = rint.Pr239

if and only if the set {pd(x)|x ∈ X} is affinely independent. Remark 2 in section240

4 states that {pd(x)|x ∈ X} is affinely independent for some integer d if X is in241

general position. Hence, I obtain Pml(d) = ∩n
i=1{ρ ∈ P|ρ · ti > αi}.242

For each i ∈ {1, . . . , n}, I can find a utility vector ui ∈ U and βi ∈ R such that243

ρ · ti > αi if and only if G(ρ : ui) > βi. Therefore, Pr = ∩n
i=1{ρ ∈ P|G(ρ : ui) ≥ βi}244

and Pml(d) = ∩n
i=1{ρ ∈ P|G(ρ : ui) > βi}. Since ρπ ∈ Pr for any π ∈ Π, it follows245

that G(ρπ : ui) ≥ βi for all i ∈ {1, . . . , n}. Hence, Aggregated Stochastic Rationality246

implies that G(ρ : ui) > βi for all i ∈ {1, . . . , n}. So, ρ ∈ ∩n
i=1{ρ ∈ P|G(ρ : ui) >247

βi} = Pml(d).248

3.1 Alternative Axiom249

In this section, I provide an alternative axiomatization of the mixed logit model.

The necessity of the alternative axiom can be understood heuristically as follows.16

Given a utility function u ∈ U , the social surplus function G(ρ : u) is linear in ρ.

Hence, if ρ is a mixed logit function (i.e., ρ =
∫

ρldm, where ρl is a logit function),

then for any u ∈ U ,

G(ρ : u) =

∫

G(ρl : u)dm ≥ inf
ρl∈Pl

G(ρl : u), (8)

where the equality holds by the Fubini theorem and the linearity of G in ρ. This250

condition (8) is a necessary condition for ρ to be a mixed logit function. Indeed,251

one can show that the last inequality holds strictly. This condition with the strict252

inequality turns out to be sufficient as well.253

16The following argument is not the proof of the necessity since the axiom requires strict inequality.
The following argument guarantees weak inequality only.
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Axiom 2. (Aggregated Logit Rationality) For any u ∈ U ,

G(ρ : u) > inf
ρl∈Pl

G(ρl : u). (9)

To interpret the axiom, remember that the probability measure m captures the254

unobservable heterogeneity across a population of individuals. Moreover, each logit255

function ρl in the support of m captures aggregate choices in a subpopulation. Thus256

Aggregated Logit Rationality means that the social surplus must be larger than the257

smallest surplus among the subpopulations. This is because, as shown in equation258

(8), the social surplus equals an average surplus across the total population.259

By slightly modifying the proof of Theorem 1, I obtain the following result:260

Corollary 1. Suppose that X is in general position. A random choice function ρ261

satisfies Aggregated Logit Rationality if and only if ρ is a mixed logit function.262

The proof of the corollary is in the appendix.263

3.2 Special case with linear p and general case with ar-264

bitrary function265

In this section, I provide axiomatizations of a special case and a general case of the266

mixed logit model. The special case I examine here is that of mixed logit functions267

with polynomials of degree 1 (i.e., pd(x) = x).268

Corollary 2. Suppose that X is affinely independent. A random choice function ρ269

satisfies Aggregated Stochastic Rationality if and only if ρ is a mixed logit function270

with polynomials of degree 1.271

The general case I examine next is that which applies to mixed logit functions272

with a general function in place of polynomials. Because of the generality, I do not273

need any conditions on X except for the finiteness. The set X does not have to be274

a subset of finite-dimensional real space. Needless to say, it does not have to be in275

general position.276

Corollary 3. A random choice function ρ satisfies Aggregated Stochastic Rational-277

ity if and only if ρ is a general mixed logit function.278

The proofs of these two corollaries are in the appendix.279
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The axiomatizations above are based on Aggregated Stochastic Rationality. By280

modifying Aggregated Logit Rationality, one can easily provide alternative axiom-281

atizations of the special case and the general case of the mixed logit model.282

4 Denseness in the Random Utility Model283

In this section, I discuss Proposition 1, which states that the set of mixed logit284

functions with polynomials of at most degree d is dense in the set of random utility285

functions if and only if {pd(x)|x ∈ X} is affinely independent. Proposition 1 implies286

the following result:287

Corollary 4. Let d be a positive integer.288

(i) If |X| ≤
(

d+K
K

)

, then any interior random utility function is generically repre-289

sented as a convex combination of logit functions with polynomials of at most degree290

d.17291

(ii) If |X| >
(

d+K
K

)

, then there is a random utility function which cannot be approx-292

imated by mixed logit functions with polynomials of at most degree d.293

To see how Proposition 1 implies Corollary 4, note that for any x ∈ X and any294

positive integer d, pd(x) is
(

d+K
K

)

−1-dimensional real vector. By the same argument295

after Definition 5, if |X| ≤
(

d+K
K

)

, then generically speaking {pd(x)|x ∈ X} is affinely296

independent. If |X| >
(

d+K
K

)

then, {pd(x)|x ∈ X} is not affinely independent.297

Therefore Proposition 1 implies Corollary 4.298

Corollary 4 is related to Theorem 1 of McFadden and Train (2000). In their299

Theorem 1, McFadden and Train (2000) state that under some technical condi-300

tions, any random utility function can be approximated by mixed logit functions.301

McFadden and Train (2000) admit “One limitation of Theorem 1 is that it provides302

no practical indication of how to choose parsimonious mixing families, or how many303

terms are needed to obtain acceptable approximations...”(p. 452) This means that304

in order to achieve better approximation, they need to use arbitrarily higher order305

polynomials.306

Corollary 4 overcomes the limitation. Corollary 4 gives a precise condition on307

the degree d of the polynomial. It is necessary and sufficient that the degree d308

be large enough to satisfy |X| ≤
(

d+K
K

)

. There are two additional advantages to309

17This implies that any noninterior random utility function can be approximated by a convex combi-
nation of logit functions with polynomials of at most degree d.
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Corollary 4 in comparison with Theorem 1 of McFadden and Train (2000). First,310

the result by McFadden and Train (2000) guarantees only an approximation, while311

result (i) in Corollary 4 guarantees the exact equality for the case of interior random312

utility functions. Second, to achieve the exact equality, Corollary 4 states that it is313

enough to use a finite convex combination of logit functions, rather than an integral314

over logit functions.315

On the other hand, the setup of McFadden and Train (2000) is more general316

than mine. They allow X to be infinite, while I assume X is finite following a317

classical setup in the decision theory literature of random choice.18 Consequently,318

Corollary 4 does not imply their Theorem 1.19 McFadden and Train’s (2000) proof319

of Theorem 1 and and my proof of Proposition 1 and Corollary 4 are very different.320

While their proof crucially depends on the Weierstrass approximation theorem, my321

proof does not depend on the approximation theorem but the geometric structure of322

the set of random utility functions, as I will explain below. Assuming the finiteness323

of the set of alternatives in the proof of McFadden and Train (2000) does not yield324

Corollary 4.325

I prove Proposition 1 by using the lemmas below. First I introduce a definition.326

Definition 6. For any positive integer d, a ranking π ∈ Π is linearly representable327

by polynomials of at most degree d if there exists a real vector β such that for all328

x, y ∈ X, π(x) > π(y) if and only if β · pd(x) > β · pd(y).329

Notice that the above definition requires that all points be ordered according to330

a given ranking π. Hence, the definition is stronger than the concept of shattering331

in machine learning. In the standard setup, shattering only requires that points be332

separated into two groups.20333

Lemma 1. For any positive integer d, the set of mixed logit functions with polyno-334

mials of at most degree d is the relative interior of the set of random utility functions335

(i.e., Pml(d) = rint.Pr) if and only if any ranking π ∈ Π is linearly representable336

by polynomials of at most degree d.337

18Moreover, as explained, in the analysis of discrete choice, the number of alternatives in a choice set is
finite by definition. The number of choice sets is usually finite, so the set of alternatives is usually finite.

19McFadden and Train (2000) also allow for a random choice function to be dependent on the observed
attributes of individuals. To make the discussion above clearer, I assumed that the set of the individuals is
homogeneous. I can easily include the set of the observed attributes in my model by allowing a primitive
random choice function to be dependent on the individuals’ observed attributes.

20I am grateful to Prof. Brendan Beare, who informed me about the concept of shattering.
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y(2nd)

x(1st)

z(3rd)

Figure 1: The set X = {x, y, z} is affinely independent. Any ranking is linearly repre-
sentable with polynomials of degree d = 1. For example, the ranking π(x) > π(y) > π(z)
is linearly representable with polynomials of degree d = 1 by β ∈ R2, which defines the
parallel hyperplanes.

z (3rd) w(2nd)

y (4th)
x (1st)

Figure 2: The set X = {x, y, z, w} is affinely dependent. The ranking π(x) > π(w) >

π(y) > π(z) is not linearly representable with polynomials of degree d = 1. As the figure
shows, no matter how one chooses β ∈ R2 and draws parallel hyperplanes, it does not
hold that β · x > β · w > β · z > β · y.

To check whether any ranking π ∈ Π is linearly representable, the following338

lemma is useful.339

Lemma 2. For any positive integer d, the set {pd(x)|x ∈ X} is affinely independent340

if and only if any ranking π ∈ Π is linearly representable by polynomials of at most341

degree d.342

Lemmas 1, 2 imply Proposition 1. To understand Lemma 2 geometrically, see343

figures 1 and 2. In the figures, I assume that K = 2 and d = 1 (i.e., pd(x) = x).344

Hence, {pd(x)|x ∈ X} is affinely independent if and only ifX is affinely independent.345

Although {pd(x)|x ∈ X} is generically affinely independent when |X| ≤
(

d+K
K

)

, a346

careful reader may wonder when {pd(x)|x ∈ X} is always (and not just generically)347
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affinely independent. The next remark provides an answer to the question.348

Remark 2. If X is in general position, then {pd(x)|x ∈ X} is affinely independent349

for some d.350

5 Discussion351

This paper provides axiomatizations of the mixed logit model. In the course of prov-352

ing the axiomatizations, I have obtained several results which could be of interest353

by themselves. In this section, I present three such results. The first result (Lemma354

3) provides an additional result on the denseness in the random utility model. The355

second result (Corollary 5) provides a necessary and sufficient condition under which356

a random utility function can be written as a linear random-coefficient model. The357

last result (Corollary 6) states that any interior random choice function is generically358

represented as an affine combination of two mixed logit functions.359

Lemma 3. Let Q be a subset of rint.Pr. Then rint.Pr = co.Q if and only if for360

any π ∈ Π, there exists a sequence {ρn}
∞
n=1 of Q such that ρn → ρπ as n → ∞.361

Lemma 3 gives a necessary and sufficient condition under which any interior362

random utility function can be represented as a convex combination of elements of363

Q. The condition of Lemma 3 is satisfied when (i) Q is the set of logit functions and364

(ii) the degree of polynomials is high enough. The condition is also be satisfied by365

some other classes of random utility functions, such as the set of probit functions.366

Hence, Lemma 3 implies that the convex hull of the set of probit functions is dense367

in the set of random utility functions.368

The next result provides a representation of a random utility function.369

Corollary 5. For any random utility function ρ, there exists µ ∈ ∆(RK) such that

ρ(D,x) = µ({β|β · x ≥ β · y for all y ∈ D})

if and only if X is affinely independent.370

In the empirical literature of the random-coefficient model, researchers have an-371

alyzed various ways to introduce the randomness of coefficients (i.e., β). In this372

literature, assuming the linear model is sometimes considered to be restrictive.373

Corollary 5 states, however, that one can focus on the linear model with no loss374

of generality if and only if X is affinely independent.375
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The last result shows representations of a random choice function.376

Corollary 6. (i) Suppose that X is in general position. For any interior random377

choice function ρ, then there exist a real number α and a pair (ρ1, ρ2) of convex378

combinations of logit functions such that ρ = αρ1 + (1− α)ρ2.
21

379

(ii) For any random choice function ρ, there exist a real number α and a pair (ρ1, ρ2)380

of random utility functions such that ρ = αρ1 + (1− α)ρ2.381

Remember that random choice functions do not have any mathematical struc-382

tures except that ρ(·,D) is a probability distribution over D, while logit functions383

and random utility functions have rich mathematical structures. Nevertheless, in384

Corollary 6, statement (i) says that an interior random choice function is generically385

represented as an affine combination of two convex combinations of logit functions;386

statement (ii) says that a random choice function is always (and not just generically)387

represented as an affine combination of two random utility functions. Dogan and388

Yildiz (2018) obtained a result which is similar to statement (ii) independently.22389

To see how Corollary 6 holds, remember that Proposition 2 implies that P ⊂390

aff.Pr. That is, for any ρ ∈ P, there exist {λi}
n
i=1 ⊂ R and {ρ′i}

n
i=1 ⊂ Pr, such391

that ρ =
∑n

i=1 λiρ
′
i and

∑n
i=1 λi = 1. Define α =

∑

i:λi>0 λi and β =
∑

i:λi<0 λi, so392

that α+ β = 1. Moreover, ρ1 ≡
∑

i:λi>0(λi/α)ρ
′
i and ρ2 ≡

∑

i:λi<0(−λi/− β)ρ′i are393

random utility functions. It follows that ρ =
∑n

i=1 λiρ
′
i = αρ1 + βρ2 = αρ1 + (1 −394

α)ρ2. This establishes statement (ii). Given statement (ii), if ρ is an interior random395

choice function, then it is without loss of generality to assume that ρ1 and ρ2 are396

interior random utility functions. Hence, statement (i) follows from Proposition 1397

and Remark 1.398

The appendices follow.399

21Note that ρ is an interior random choice function if ρ is random choice function and ρ(D, x) > 0 for
any D ∈ D and x ∈ D.

22Statement (ii) of Corollary 6 is mentioned in a footnote (footnote 7) in an earlier version of this
paper posted on September 15, 2017. See http://www.hss.caltech.edu/content/axiomatizations-mixed-
logit-model. I wish to acknowledge Jay Lu for the discussion that led to statement (ii). To obtain
Theorem 1 of Dogan and Yildiz (2018) from statement (ii), suppose that ν1, ν2 ∈ ∆(Π) represent ρ1 and
ρ2, respectively. Define {≻i} ≡ supp.ν1. For each ranking ≻ on X , define an “inverse” ranking ≻−1 by
flipping the order of ≻ (i.e., x ≻−1 y if and only if y ≻ x). Define {✄j} ≡ {≻ | ≻−1∈ supp.ν2}. Then
{✄−1

j } ≡ supp.ν2. For each ≻i, define λ(≻i) = α1ν1(≻). For each ✄j , define λ(✄j) = |β|ν2(✄
−1

j ). Then
ρ(D, x) = αρ1(D, x) − |β|ρ2(D, x) = αν1(≻i |x ≻i y for all y ∈ D) − |β|ν2(≻j |x ≻j y for all y ∈ D) =
λ(≻i |x ≻i y for all y ∈ D)− λ(✄j |y ✄j x for all y ∈ D).
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A Proof of Lemmas and Remarks400

In the following, I prove Remarks 1, 2 and Lemmas 2, 3. In section B, I will prove401

Lemma 1. First I state several lemmas that I use in the rest of the appendix.402

Lemma 4. The set Pr of random utility functions is a polytope. Moreover, Pr =403

co.{ρπ|π ∈ Π}, and there exist hyperplanes {Hi}
n
i=1 in RD×X such that aff.Pr 6⊂ H−

i404

and Pr = (∩n
i=1H

−
i )∩aff.Pr, where H−

i is the closed lower-half space of Hi for each405

i ∈ {1, . . . , n}.406

Proof. Choose any ρ ∈ Pr to show ρ ∈ co.{ρπ|π ∈ Π}. There exists ν ∈ ∆(Π)407

that rationalizes ρ. Define λπ = ν(π) for each π ∈ Π. Define ρ′ =
∑

π∈Π λπρ
π

408

to show ρ = ρ′. For each (D,x) ∈ D × X, ρ(D,x) = ν(π ∈ Π|π(x) ≥ π(D)) =409

∑

π∈Π ν(π)1(π(x) ≥ π(D)) = ρ′(D,x). Then ρ = ρ′ ∈ co.{ρπ|π ∈ Π}. So Pr ⊂410

co.{ρπ|π ∈ Π}. The argument can be reversed to obtain the converse. By the411

definition of polytope and Theorem 9.4 of Soltan (2015), the desired hyperplanes412

exist.413

I will use the following version of theorem of alternatives in several places.414

Lemma 5. Let A be an r × n real matrix, B be an l × n real matrix, and E be an415

real m× n matrix. Exactly one of the following alternatives is true.416

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, E · u ≫ 0.417

2. There is θ ∈ Rr, η ∈ Rl, and π ∈ Rm such that θ ·A+η ·B+π ·E = 0; π ≫ 0418

and η ≥ 0.419

See Theorem 1.6.1 of Stoer and Witzgall (2012) for the proof.420

A.1 Proof of Remark 1421

To prove the remark, I will prove the following general result as a claim. The claim422

is trivial when the set C is closed. In Remark 1, I use the claim with C = Pl, where423

the set Pl is not closed.424

Claim: For any set C ⊂ RK , let ∆(C) denote the set of probability mea-425

sures over C. Then, co.C =
{ ∫

xdm(x)|m ∈ ∆(C)
}

, where
∫

xdm(x) denotes426

K-dimensional vector whose k-th element is
∫

x(k)dm(x) for any k ∈ {1, . . . ,K}.427

18



Proof. By definition, I immediately obtain co.C ⊂ {
∫

xdm(x)|m ∈ ∆(C)}. In the

following, I will show that

{

∫

xdm(x)|m ∈ ∆(C)
}

⊂ co.C. (10)

First I will show that

{

∫

xdm(x)|m ∈ ∆(C)
}

⊂ cl.co.C. (11)

To prove this statement, suppose by way of contradiction that
∫

xdm(x) 6∈ cl.co.C428

for some m ∈ ∆(C). Then by the strict separating hyperplane theorem (Corol-429

lary 11.4.2 of Rockafellar (2015)), there exist t ∈ RK \ {0} and α ∈ R such that430

(
∫

xdm(x)) · t = α > x · t for any x ∈ cl.co.C. This is a contradiction because431

α = (
∫

xdm(x)) · t =
∫

(x · t)dm(x) <
∫

αdm(x) = α.432

I now will show (10) by the induction on the dimension of co.C.433

Induction Base: If dim co.C = 1, then (10) holds obviously. If dim co.C = 2,434

then there must exist y, z such that co.C is the line segment between y and z.435

In the following, I assume that the line segment does not contain both y and z436

but the proof for the other cases are similar. Then for any x ∈ co.C, there exists437

unique α(x) ∈ (0, 1) such that x = α(x)y + (1 − α(x))z. Notice that the function438

α is continuous in x and hence measurable. Moreover, the function α is integrable439

because α is bounded and nonnegative. Choose any m ∈ ∆(C). Then
∫

α(x)dm(x)440

exists. Moreover, since 0 < α(x) < 1, it follows from the monotonicity of integral441

that 0 <
∫

α(x)dm(x) < 1. Denote the value of the integral by β ∈ (0, 1). Then,442

∫

xdm(x) =
∫

α(x)y + (1− α(x))zdm(x) = βy + (1− β)z ∈ co.C, as desired.443

Choose an integer l ≥ 3.444

Induction Hypothesis: Now suppose that (10) holds for any C such that445

dimC ≤ l.446

Induction Step: For any C such that dimC = l + 1, (10) holds. To prove the447

step, choose any m ∈ ∆(C). By (11), I have
∫

xdm(x) ∈ cl.co.C.448

First consider the case where
∫

xdm(x) ∈ rint.cl.co.C. Then since rint.cl.co.C =449

rint.co.C (by Theorem 6.3 of Rockafellar (2015)), so
∫

xdm(x) ∈ co.C, as desired.450

Next consider the case where
∫

xdm(x) 6∈ rint.cl.co.C. Then,
∫

xdm(x) ∈451

∂cl.co.C ≡ cl.co.C \ rint.co.C. There exists a supporting hyperplane H of cl.co.C at452

∫

xdm(x). Then, there exist t ∈ RK \ {0} and α ∈ R such that H = {x|x · t = α}453

and
∫

xdm(x) · t = α > x · t for any x ∈ cl.co.C ∩Hc. This implies that m(H) = 1.454
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Hence, m(H∩C) = 1. SinceH is a supporting hyperplane and cl.co.C 6⊂ H, I obtain455

dim(H ∩ aff.C) ≤ l. Hence, dim(H ∩ C) ≤ l. Therefore, the induction hypothesis456

shows that
∫

xdm(x) ∈ co.(H ∩ C) ⊂ co.C, as desired.457

The claim above implies Remark 1. The result is not true in an infinite dimen-458

sional space.23459

A.2 Proof of Lemma 2460

For any ranking π ∈ Π and a positive integer d, consider the following condition:461

if
∑|X|−1

i=1 λi(pd(π
−1(|X| + 1 − i)) − pd(π

−1(|X| − i))) = 0 and λi ≥ 0 for all i ∈462

{1, . . . , |X| − 1}, then λi = 0 for all i ∈ {1, . . . , |X| − 1}. I call this condition as463

Condition (∗).464

Step 1: For each π ∈ Π and a positive integer d, Condition (∗) holds if and only465

if π is linearly representable by polynomials at most degree d (i.e., there exists β466

such that for any x, y ∈ X, π(x) > π(y) ⇐⇒ β · pd(x) > β · pd(y)).467

Proof. Fix π ∈ Π.468

∃β
[

β · pd(π
−1(|X|)) > β · pd(π

−1(|X| − 1)) > · · · > β · pd(π
−1(2)) > β · pd(π

−1(1))
]

⇐⇒ ∃β
[

β · (pd(π
−1(|X|)) − pd(π

−1(|X| − 1))) > 0, . . . , β · (pd(π
−1(2)) − pd(π

−1(1))) > 0
]

⇐⇒6 ∃λ ∈ R|X|−1
[
∑|X|−1

i=1 λi(pd(π
−1(|X|+ 1− i))− pd(π

−1(|X| − i))) = 0, λ ≥ 0, and λ 6= 0
]

⇐⇒ Condition(∗),

where the second to the last equivalence is by Lemma 5.469

Step 2: For a given positive integer d, the set {pd(x)|x ∈ X} is affinely inde-470

pendent if and only if Condition (∗) holds for the given positive integer d and any471

π ∈ Π.472

Proof. I first show that the only if part. Fix any π ∈ Π. Without loss of gen-473

erality assume that π(xi) = |X| + 1 − i for all i ∈ {1, . . . , |X|}. Suppose that474

∑|X|−1
i=1 λi(pd(π

−1(|X|+1−i))−pd(π
−1(|X|−i))) ≡

∑|X|−1
i=1 λi(pd(xi)−pd(xi+1)) = 0475

and λi ≥ 0 for all i. Define µ1 = λ1, µi = λi − λi−1 for all i ∈ {2, . . . , |X| − 1}, and476

µ|X| = −λ|X|−1. Then
∑|X|−1

i=1 λi(pd(xi) − pd(xi+1)) = λ1pd(x1) +
∑|X|−1

i=2 (λi −477

23Let {ei}∞i=1 be the base of the infinite dimensional real space. Define C = {ei}∞i=1. Define a measure
m on C such that m(ei) = (1/2)i for each i. Then,

∑∞
i=1

m(ei) = 1, so that m is a probability measure
on C.

∫

xdm cannot be represented as any convex combination of elements of C. For any y ∈ co.C, there
exists i such that y(ei) = 0.
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λi−1)pd(xi) + (−λ|X|−1)pd(x|X|) = µ1pd(x1) +
∑|X|−1

i=2 µipd(xi) + µ|X|pd(x|X|) =478

∑|X|
i=1 µipd(xi). Since

∑|X|−1
i=1 λi(pd(xi) − pd(xi+1)) = 0, I have

∑|X|
i=1 µipd(xi) = 0.479

Moreover,
∑|X|

i=1 µi = λ1 +
∑|X|−1

i=2 (λi − λi−1) + (−λ|X|−1) = 0. If {pd(x)|x ∈ X}480

is affinely independent, then µi = 0 for all i ∈ {1, . . . , |X|}. Hence, λi = 0 for all481

i ∈ {1, . . . , |X| − 1}.482

Next I will show the if part. Choose any real numbers {µi}
|X|
i=1 such that483

∑|X|
i=1 µipd(xi) = 0 and

∑|X|
i=1 µi = 0 to show µi = 0 for all i ∈ {1, . . . , |X|}. Order484

µi by its value. Without loss of generality assume that µ1 ≥ µ2 ≥ · · · ≥ µ|X|. If485

µ = 0, then the proof is finished. If µ 6= 0 then µ1 > 0. For each xi ∈ X, define486

π(xi) = |X|+ 1− i. Then π ∈ Π.487

Define λ1 = µ1 and λi =
∑i

j=1 µj for all i ∈ {2, . . . , |X|−1}. Then λ 6= 0 because488

µ1 > 0. I will show that λi ≥ 0 for all i ∈ {1, . . . , |X|−1}. Suppose by way of contra-489

diction that λi < 0 for some i. Then µi < 0 because µ1 ≥ · · · ≥ µi. Since 0 > µi ≥ µj490

for all j ≥ i, I have
∑|X|

j=i+1 µj < 0. It follows that
∑|X|

j=1 µj = λi +
∑|X|

j=i+1 µj < 0.491

This contradicts that
∑|X|

i=1 µi = 0. Therefore, λi ≥ 0 for all i ∈ {1, . . . , |X| − 1}.492

Moreover
∑|X|−1

i=1 λi(pd(π
−1(|X|+ 1− i))− pd(π

−1(|X| − i))) =
∑|X|−1

i=1 λi(pd(xi)−493

pd(xi+1)) = λ1pd(x1) +
∑|X|−1

i=2 (λi − λi−1)pd(xi) + (−λ|X|−1)pd(x|X|) = µ1pd(x1) +494

∑|X|−1
i=2 µipd(xi) + (−

∑|X|−1
i=1 µi)pd(x|X|) =

∑|X|
i=1 µipd(xi) = 0, where the second to495

the last equality holds because
∑|X|

i=1 µi = 0. Therefore, by Condition (∗), λi = 0496

for all i ∈ {1, . . . , |X| − 1}. Hence, µi = 0 for all i ∈ {1, . . . , |X|}.497

A.3 Proof of Lemma 3498

Let Q be any subset of rint.Pr. I will show that rint.Pr = co.Q if and only if for499

any π ∈ Π there exists a sequence {ρn}
∞
n=1 of Q such that ρn → ρπ as n → ∞.500

Step 1: I will show the if part of the statement. Suppose by way of contradiction501

that there exists ρ ∈ rint.Pr \co.Q. Because co.Q 6= ∅, I obtain rint.co.Q 6= ∅. Since502

ρ 6∈ co.Q, then by the proper separating hyperplane theorem (Theorem 11.3 of503

Rockafellar (2015)), there exist t ∈ RD×X \{0} and a ∈ R such that ρ · t ≥ a ≥ ρ′ · t504

for any ρ′ ∈ co.Q, and a > ρ′′ · t for some ρ′′ ∈ co.Q.505

I obtain a contradiction by two substeps. Define P̂r = {ρ̂ ∈ Pr|t · ρ̂ > t · ρ}.506

Step 1.1: P̂r 6= ∅. To prove the step, remember that there exists ρ′′ ∈ co.Q507

such that ρ′′ · t < ρ · t. Moreover, since Q ⊂ Pr and Pr is convex, it follows that508

ρ′′ ∈ co.Q ⊂ Pr. Since ρ ∈ rint.Pr, there exists λ > 1 such that λρ+(1−λ)ρ′′ ∈ Pr.509

Moreover, (λρ+(1−λ)ρ′′) · t = λρ · t+(1−λ)ρ′′ · t = ρ · t+(λ−1)(ρ · t−ρ′′ · t) > ρ · t,510

where the last inequality holds because λ > 1 and ρ′′ ·t < ρ·t. So λρ+(1−λ)ρ′′ ∈ P̂r,511
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and P̂r 6= ∅.512

Step 1.2: There exists ρ′ ∈ co.Q such that ρ′ · t > ρ · t. To prove the step,513

choose any ρ̂ ∈ P̂r. By Lemma 4, there exist nonnegative numbers {λ̂π}π∈Π such514

that ρ̂ =
∑

π∈Π λ̂πρ
π and

∑

π∈Π λ̂π = 1.515

By the supposition of the lemma, for any π ∈ Π, there exists a sequence {ρ′n}
∞
n=1516

of Q such that ρ′n → ρπ as n → ∞. Therefore, for any π ∈ Π and any positive num-517

ber ε, there exists ρ′π ∈ {ρ′n}
∞
n=1 such that ‖ρ′π − ρπ‖ < ε. Define ρ′ =

∑

π∈Π λ̂πρ
′
π.518

Then ρ′ ∈ co.Q and ‖ρ′ − ρ̂‖ =
∥

∥

∥

∑

π∈Π λ̂π(ρ
′
π − ρπ)

∥

∥

∥
≤

∑

π∈Π λ̂π‖ρ
′
π − ρπ‖ ≤519

∑

π∈Π λ̂πε = ε. Therefore, |t · ρ′ − t · ρ̂| ≤ ‖t‖‖ρ′ − ρ̂‖ ≤ ‖t‖ε. Since t · ρ̂ > t · ρ, then520

by choosing ε small enough, I obtain t · ρ′ > t · ρ.521

Step 2: I will show the only inf part of the statement. Since rint.Pr = co.Q,

Pr = cl.Pr = cl.rint.Pr = cl.co.Q = co.cl.Q, (12)

where the first equality holds because Pr is closed, the second equality holds by522

Theorem 6.3 of Rockafellar (2015), and the last equality holds because Q is bounded523

and by Theorem 17.2 of Rockafellar (2015). Since Pr = co.cl.Q, for any π ∈ Π, there524

exist positive numbers {λi}
m
i=1 such that

∑m
i=1 λi = 1 and a convergent sequence525

{ρin}
∞
n=1 of Q for each i ∈ {1, . . . ,m} such that

∑m
i=1 λiρ

i
n → ρπ as n → ∞. Since526

ρπ is a vertex of Pr, ρ
i
n → ρπ as n → ∞ for all i.527

A.4 Proof of Remark 2528

If X is affinely independent, then the result holds with d = 1. Consider the

case where X is not affinely independent. Suppose by way of contradiction that

{pd(x)|x ∈ X} is not affinely independent with d = |X|. Let X = {x1, . . . , x|X|}.

Without loss of generality, assume that there exists α ∈ R|X|−1 such that xn1 =
∑|X|

i=2 αix
n
i for all n ∈ {1, . . . , |X|} and

∑|X|
i=2 αi = 1. For each k ∈ {1, . . . ,K},















1 1 · · · 1

x2(k) x3(k) · · · x|X|(k)
...

x
|X|
2 (k) x

|X|
3 (k) · · · x

|X|
|X|(k)





























α2

α3

...

α|X|















=















1

x1(k)
...

x
|X|
1 (k)















. (13)
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Fix k ∈ {1, . . . ,K}. By Lemma 5, the existence of α ∈ R|X|−1 satisfying (13)

implies the nonexistence of θ ∈ R|X|+1 satisfying the following equations















1 x1(k) · · · x
|X|
1 (k)

1 x2(k) · · · x
|X|
2 (k)

...

1 x|X|(k) · · · x
|X|
|X|(k)





























θ0

θ1
...

θ|X|















=















0

0
...

1















. (14)

The rectangle matrix in (14) is a Vandermonde matrix. Since X is in general529

position, the rank of the matrix is |X|. Hence, θ ∈ R|X|+1 satisfying (14) must530

exist. This is a contradiction.531

B Proof of Lemma 1 and Proposition 1532

By Remark 1, it suffices to show that for any positive integer d, Pml(d) = rint.Pr if533

and only if {pd(x)|x ∈ X} is affinely independent. To show the result, I prove two534

lemmas.535

Lemma 6. co.Pl ⊂ rint.Pr.536

Proof. First I show that for any ρ ∈ Pl, there exists ν ∈ ∆(Π) such that ρ is537

rationalized by ν. Moreover ν(π) > 0 for all π ∈ Π.538

To show the statement, remember that for any ρ ∈ Pl, there exists a real vector

β and a positive integer d such that ρ(D,x) = exp(β · pd(x))/
∑

y∈D exp(β · pd(y)).

By Block and Marschak (1960), ρ ∈ Pr, so there exists ν ∈ ∆(Π) such that ν

rationalizes ρ. Moreover, in their construction of ν, they obtain that for any π ∈ Π,

ν(π) =

|X|
∏

k=1

exp(β · pd(xk))
∑|X|

l=k exp(β · pd(xl))
> 0,

where X = {x1, x2, . . . , x|X|} and π(x1) > π(x2) > · · · > π(x|X|). Therefore ρ =539

∑

π∈Π ν(π)ρπ and
∑

π∈Π λπ = 1. Since ν(π) > 0 for all π ∈ Π, it follows from540

Theorem 6.9 in Rockafellar (2015) that ρ ∈ rint.co.{ρπ|π ∈ Π} = rint.Pr, where the541

last equality holds by Lemma 4.542
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Lemma 7. For any ranking π ∈ Π, π is linearly representable by polynomials of543

at most degree d if and only if there exists a sequence {ρn}
∞
n=1 of Pl(d) such that544

ρn → ρπ as n → ∞.545

Proof. Assume that a ranking π is linearly representable by polynomials at most546

degree d. Without loss of generality, assume that X = {x1, . . . , x|X|} and π(x1) >547

π(x2) > · · · > π(x|X|). Then there exists β such that β · pd(x1) > β · pd(x2) > · · · >548

β · pd(x|X|). For any positive integer k and any (D,x) ∈ D ×X such that x ∈ D,549

ρkβ(D,x)

≡
exp(kβ · pd(x))

∑

y∈D exp(kβ · pd(y))

=
1

∑

y∈D:π(y)>π(x) exp(kβ · (pd(y)− pd(x))) + 1 +
∑

y∈D:π(y)<π(x) exp(kβ · (pd(y)− pd(x)))
.

For any y ∈ D, π(y) > π(x) if and only if β · (pd(y) − pd(x)) > 0. Therefore, as550

k → ∞, if π(x) ≥ π(D), then ρkβ(D,x) → 1; if π(x) < π(D), then ρkβ(D,x) → 0.551

Hence, ρkβ → ρπ as k → ∞.552

To show the converse, fix a positive integer d and a sequence {βn}
∞
n=1 such that

ρβn
→ ρπ as n → ∞, where for any D ∈ D and x ∈ D, ρβn

(D,x) ≡ exp(βn ·

pd(x))/
∑

y∈D exp(βn · pd(y)). For any D ∈ D and x ∈ D, note that

ρβn
(D,x) =

1

1 +
∑

y∈D\x exp(βn · (pd(y)− pd(x)))
.

Let π(x) ≥ π(D). Since ρβn
→ ρπ as n → ∞, it must hold that βn ·(pd(y)−pd(x)) →553

−∞ as n → ∞ for all y ∈ D \ {x}. Therefore, for each D ∈ D there exists n(D)554

such that for all n > n(D) and all y ∈ D \ {x}, βn · pd(x) > βn · pd(y).555

Without loss of generality assume that X = {x1, . . . , x|X|} and π(x1) > π(x2) >556

· · · > π(x|X|). Let n > max
{

n(X), n({xi}
|X|
i=2), . . . , n({xi}

|X|
i=|X|−1)

}

. Then, βn ·557

pd(x1) > βn · pd(x2) > · · · > βn · pd(x|X|−1) > βn · pd(x|X|). Therefore, π is linearly558

representable by polynomials of at most degree d.559

By Lemma 6, I can apply Lemma 3 with Q being the set of logit functions with560

polynomials of at most degree d. Then Lemmas 3, 7 imply Lemma 1. Lemmas 1, 2561

imply Proposition 1.562
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C Proof of Proposition 2563

To prove Proposition 2, I prove one more lemma.564

Lemma 8. For any t ∈ RD×X , ρπ · t = ρπ
′

· t for all π, π′ ∈ Π if and only if565

t(D,x) = t(D, y) for all D ∈ D and x, y ∈ D.566

Proof. For notational convenience, for any π ∈ Π andD ∈ D withD = {x1, . . . , x|D|},567

I write ρπ(D) =
(

ρπ(D,x1), . . . , ρ
π(D,x|D|)

)

. The if part of the statement is easy to568

prove. Assume t(D,x) = t(D, y) for all D ∈ D and x, y ∈ D. Define t(D) = t(D,x)569

for any x ∈ D. Then for any π ∈ Π, ρπ · t =
∑

D∈D

∑

x∈D ρπ(D,x)t(D,x) =570

∑

D∈D t(D)
∑

x∈D ρπ(D,x) =
∑

D∈D t(D).571

To show the only if part, let k be the minimal integer such that |D| ≥ k + 1 for572

any D ∈ D.573

Claim: For any D ∈ D such that |D| = k + 1 and any x, y ∈ D, t(D,x) =574

t(D, y).575

To prove the claim, denote D by {x, y, w1, . . . , wk−1}. (If k ≤ 1, then wis are not576

included in D and remove wis in the following proof.) Choose any π, π′ ∈ Π such577

that for any z ∈ X \ {x, y, w1, . . . , wk−1} and any i ∈ {1, . . . , k − 1}, π(z) = π′(z),578

π(z) > π(x) > π(y) > π(wi), π
′(z) > π′(y) > π′(x) > π′(wi), and π(wi) = π′(wi).579

To show the claim, I will show the following two facts: (a) For any E ∈ D,580

ρπ(E) 6= ρπ
′

(E) if and only if {x, y} ⊂ E and π(x) ≥ π(E); (b) If E ∈ D, {x, y} ⊂ E581

and π(x) ≥ π(E), then ρπ(E, x) = 1, ρπ(E, z) = 0 for any z ∈ D \ {x} and582

ρπ
′

(E, y) = 1, ρπ
′

(E, z) = 0 for any z ∈ E \ {y}.583

It is easy to see statement (b) and the only if part of statement (a). To show584

the if part of statement (a), assume {x, y} 6⊂ E or π(x) < π(z) for some z ∈ E.585

First consider the case where {x, y} 6⊂ E. If both x, y do not belong to E, then586

ρπ(E) = ρπ
′

(E) because the ranking over X \ {x, y} is the same for π and π′. If587

only one of them, say x, belongs to E, then ρπ(E) = ρπ
′

(E) because the ranking588

over X \ {y} is the same for π and π′.589

Next consider the case where π(x) < π(z) for some z ∈ E. Then by the definition590

of π, I obtain z ∈ X \ {x, y, w1, . . . , wk−1}. Therefore, π′(y) < π′(z). Hence,591

ρπ(E, z) = 1 = ρπ
′

(E, z) and ρπ(E, z′) = 0 = ρπ
′

(E, z′) for all z′ ∈ E \ {z}.592
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Now, I will prove the claim. Since t · ρπ = t · ρπ
′

,593

0 =
∑

(E,z)∈D×X t(E, z)(ρπ(E, z) − ρπ
′

(E, z))

=
∑

(E,z)∈D×X:{x,y}⊂E,π(x)≥π(E) t(E, z)(ρπ(E, z) − ρπ
′

(E, z)) (∵ (a))

=
∑

E∈D:π(x)≥π(E),{x,y}⊂E t(E, x) − t(E, y) (∵ (b))

= t(D,x)− t(D, y) +
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≤k(t(E, x) − t(E, y)).

The second term is zero because there is no D ∈ D such that |D| ≤ k. So t(D,x) =594

t(D, y). This completes the proof of the claim.595

596

The general case can be proved by the induction on |D|. Choose any D such

that |D| = k′ + 1, where k′ > k. Choose any x, y ∈ D. As an induction hypothesis,

suppose that for any E ∈ D, if |E| ≤ k′ then t(E, x) = t(E, y) for any x, y ∈ E. By

the same argument (with k′ in place of k) in the proof of the claim, I have

0 = t(D,x)− t(D, y) +
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≤k′

(t(E, x) − t(E, y)).

Since the second term is zero by the induction hypothesis, t(D,x) = t(D, y).597

Now I will prove Proposition 2.598

The set {q ∈ RD×X |(i) and (ii)} is affine. So it suffices to show that for any

affine set A, if Pr ⊂ A, then {q ∈ RD×X |(i) and (ii)} ⊂ A. Since the set is affine,

then by Rockafellar (2015), there exist a positive integer L, L× (|D| × |X|) matrix

B, and L× 1 vector b such that A = {q ∈ RD×X |Bq = b}. For any l ∈ {1, . . . , L},

Bl(D,x) denotes (l, (D,x)) entry of B. (Remember that B has a column vector for

each (D,x) ∈ D ×X.) So Bq = b means that for any l ∈ {1, . . . , L},

∑

D∈D

∑

x∈X

Bl(D,x)q(D,x) = bl. (15)

By assuming Pr ⊂ {q ∈ RD×X |Bq = b}, I will show that if q satisfies (i) and599

(ii), then (15) holds for any l ∈ {1, . . . , L}.600

Step 1: Bl(D,x) = Bl(D, y) for any l ∈ {1, . . . , L}, D ∈ D, and x, y ∈ D. To601

prove Step 1, fix any l. For any π ∈ Π, ρπ ∈ Pr ⊂ {q ∈ RD×X |Bq = b}. Hence,602

(15) holds with q = ρπ for any π ∈ Π. Thus ρπ ·Bl = ρπ
′

· Bl for any π, π′ ∈ Π. By603

Lemma 8, this implies that Bl(D,x) = Bl(D, y) for any D ∈ D, and x, y ∈ D.604

By Step 1, I can define Bl(D) = Bl(D,x) for any x ∈ D.605
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Step 2: If q satisfies (i) and (ii), then Bq = b, or
∑

D∈D

∑

x∈X Bl(D,x)q(D,x) =

bl for any l ∈ {1, . . . , L}. To prove Step 2, choose any π ∈ Π and l ∈ {1, . . . , L}.

Since ρπ ∈ Pr ⊂ {q ∈ RD×X |Bq = b}, then by (15),

bl =
∑

D∈D

∑

x∈X

Bl(D,x)ρπ(D,x) =
∑

D∈D

Bl(D), (16)

where the second equality holds by ρπ(D, z) = 1 if π(z) ≥ π(D) and ρπ(D, z) = 0606

otherwise.607

Finally by using these equalities, for each l ∈ {1, . . . , L}, I obtain the following608

equations:609

∑

D∈D

∑

z∈X Bl(D, z)q(D, z) =
∑

D∈D

∑

z∈D Bl(D, z)q(D, z) (∵ (ii))

=
∑

D∈D

∑

z∈D Bl(D)q(D, z) (∵ Step 1)

=
∑

D∈D Bl(D)
∑

z∈D q(D, z)

=
∑

D∈D Bl(D) (∵ (i))

= bl. (∵ (16))

This establishes that aff.Pr = {q ∈ RD×X |(i) and (ii)}.610

D Proof of Theorem 1611

Before proving the theorem, note that for any random choice function ρ ∈ P and612

any u ∈ U , it holds that G(ρ : u) = ρ · u. To see this notice that G(ρ : u) ≡613

∑

D∈D

∑

x∈D ρ(D,x)u(D,x) =
∑

D∈D

∑

x∈X ρ(D,x)u(D,x) ≡ ρ · u, where the sec-614

ond equality holds because ρ(D,x) = 0 if x 6∈ D. In the following, I will use this615

equality freely.616

To show the necessity of Aggregated Stochastic Rationality, fix any u ∈ U . Since617

u(D, ·) is not constant for some D ∈ D. Lemma 8 shows that G(ρπ : u) = ρπ · u 6=618

ρπ
′

· u = G(ρπ
′

: u) for some π, π′ ∈ Π. Fix ρ ∈ Pml. By Remark 1 and Lemma619

6, ρ ∈ Pml = co.Pl ⊂ rint.Pr. Hence, ρ is rationalized by full support ν ∈ ∆(Π).620

Then, G(ρ : u) =
∑

π∈Π ν(π)G(ρπ : u) > minπ∈ΠG(ρπ : u).621

Now I will show the sufficiency of Aggregated Stochastic Rationality. First622

I will show Pml = ∩n
i=1{ρ

′ ∈ P|ρ′ · ti > αi} for some {ti}
n
i=1 ⊂ RD×X \ {0} and623

{αi}
n
i=1 ⊂ R. By Lemma 4, there exist {ti}

n
i=1 ⊂ RD×X \{0} and {αi}

n
i=1 ⊂ R such624

that Pr = ∩n
i=1{q ∈ RD×X |q · ti ≥ αi} ∩ aff.Pr and aff.Pr 6⊂ {q ∈ RD×X |q · ti ≥ αi}625

for all i ∈ {1, . . . , n}. Since rint.Pr 6= ∅, then by Theorem 6.5 of Rockafellar (2015),626
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rint.Pr = ∩n
i=1rint.{q ∈ RD×X |q · ti ≥ αi} ∩ aff.Pr = ∩n

i=1{q ∈ RD×X |q · ti >627

αi} ∩ aff.Pr. By Proposition 2, Pr ⊂ P ⊂ aff.Pr. Thus628

Pr = Pr ∩ P (∵ Pr ⊂ P)

= ∩n
i=1{q ∈ RD×X |q · ti ≥ αi} ∩ aff.Pr ∩ P

= ∩n
i=1{q ∈ RD×X |q · ti ≥ αi} ∩ P (∵ P ⊂ aff.P)

= ∩n
i=1{ρ

′ ∈ P|ρ′ · ti ≥ αi}.

Hence

Pr = ∩n
i=1{ρ

′ ∈ P|ρ′ · ti ≥ αi} (17)

and

rint.Pr = ∩n
i=1{ρ

′ ∈ P|ρ′ · ti > αi}. (18)

Since X is in general position, it follows from Proposition 1 and Remark 2 that

Pml(d) = rint.Pr for some positive integer d. Hence

Pml(d) = ∩n
i=1{ρ

′ ∈ P|ρ′ · ti > αi}. (19)

Fix any i ∈ {1, . . . , n}. I will show that there exist π, π′ ∈ Π such that ρπ · ti 6=629

ρπ
′

· ti. Suppose, by way of contradiction, that for all π, π′ ∈ Π, ρπ · ti = ρπ
′

· ti.630

Let α′
i ≡ ρπ · ti for some π ∈ Π. Since ρπ ∈ Pr and (18) holds, I have α′

i ≥ αi.631

Then, aff.Pr = aff.co.{ρπ|π ∈ Π} = aff.{ρπ|π ∈ Π} ⊂ {q ∈ RD×X |q · ti = α′
i} ⊂632

{q ∈ RD×X |q · ti ≥ αi}. This is a contradiction to the fact that aff.Pr 6⊂ {q ∈633

RD×X |q · ti ≥ αi} for all i ∈ {1, . . . , n}. By Lemma 8, the existence of π, π′ ∈ Π634

such that ρπ · ti 6= ρπ
′

· ti implies that ti(D, ·) is nonconstant on some D ∈ D.635

Now I will define ui for each ti. First, for each i ∈ {1, . . . , n}, define βi =636

max(D,x)∈D×X s.t. ti(D,x)<0(−ti(D,x)). For any (D,x) ∈ D × X such that x ∈ D,637

define ui(D,x) = ti(D,x) + βi. Then ui(D,x) ≥ 0. For any (D,x) ∈ D ×X such638

that x 6∈ D, define ui(D,x) = 0. Moreover, ui(D, ·) is nonconstant on some D ∈ D639

because ti(D, ·) is nonconstant on some D ∈ D. It follows that ui ∈ U .640

For all i ∈ {1, . . . , n}, I will show minπ∈ΠG(ρπ : ui) ≥ αi + βi|D|. To see641

this note that for any π ∈ Π, ρπ · ti ≥ αi by (17). So G(ρπ : ui) = ρπ · ui =642

ρπ · ti +
∑

D∈D

∑

x∈D βiρ
π(D,x) = ρπ · ti + βi|D| ≥ αi + βi|D|. Thus minπ∈ΠG(ρπ :643

ui) ≥ αi + βi|D| for all i ∈ {1, . . . , n}.644

By a similar calculation, I haveG(ρ : ui) = ρ·ui = ρ·ti+
∑

D∈D

∑

x∈D βiρ(D,x) =645

ρ · ti + βi|D| for all i ∈ {1, . . . , n}.646
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Remember that Aggregated Stochastic Rationality requiresG(ρ : ui) > minπ∈ΠG(ρπ :647

ui) for each i ∈ {1, . . . , n}. Hence, by the above inequalities, ρ·ti+βi|D| > αi+βi|D|,648

so that ρ · ti > αi for all i ∈ {1, . . . , n}. Therefore, I have ρ ∈ ∩n
i=1{ρ

′ ∈ P|ρ′ · ti >649

αi} = Pml(d) by (19).650

E Proof of Corollaries651

E.1 Proof of Corollary 1652

To see the necessity of Aggregated Logit Rationality, fix any u ∈ U and ρ ∈ Pml.

Then by Remark 1 and Lemma 6, Pml = co.Pl ⊂ rint.Pr. Hence, ρ ∈ rint.Pr.

Notice that

inf
ρ′∈Pl

G(ρ′ : u) = inf
ρ′∈co.Pl

G(ρ′ : u) = inf
ρ′∈rint.Pr

G(ρ′ : u) = min
ρ′∈Pr

G(ρ′ : u) < G(ρ : u),

where the first equality holds because G(ρ′ : u) is linear in ρ′, the second equality653

holds because co.Pl = rint.Pr (by Remark 1 and Proposition 1 and the assumption654

thatX is in general position), the third equality holds becauseG(ρ′ : u) is continuous655

in ρ′ and Pr is compact, and the last strict inequality holds because G is linear in656

ρ′, Pr is closed, and ρ ∈ rint.Pr.657

The sufficiency part of the proof is the same as the proof of Theorem 1 except658

the last part. For all i ∈ {1, . . . , n}, I will show infρl∈Pl
G(ρl : ui) ≥ αi + βi|D|.659

To see this note that for any ρl ∈ Pl, ρl · ti > αi by (18). So G(ρl : ui) =660

ρl · ui = ρl · ti +
∑

D∈D

∑

x∈D βiρl(D,x) = ρl · ti + βi|D| > αi + βi|D|. Thus661

infρl∈Pl
G(ρl : ui) ≥ αi + βi|D| for all i ∈ {1, . . . , n}.662

Moreover as in the proof of Theorem 1, G(ρ : ui) = ρ · ti + βi|D| for all663

i ∈ {1, . . . , n}. If ρ satisfies Aggregated Logit Rationality, then G(ρ : ui) >664

infρl∈Pl
G(ρl : ui) for all i ∈ {1, . . . , n}. Hence ρ · ti + βi|D| > αi + βi|D|, so665

that ρ · ti > αi for all i ∈ {1, . . . , n}. Therefore, ρ ∈ ∩n
i=1{ρ

′ ∈ P|ρ′ · ti > αi} = Pml666

by (19).667

Finally, I will provide an alternative proof for the sufficiency part. Suppose by

the way of contradiction that ρ 6∈ Pml. By Remark 1, ρ 6∈ co.Pl. By a separating

hyperplane theorem, there exists t ∈ RD×X such that

ρ · t ≤ ρ′ · t for all ρ′ ∈ Pl and ρ · t < ρ′′ · t for some ρ′′ ∈ Pl.
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Define β = max(D,x)∈D×X s.t. t(D,x)<0(−t(D,x)). For any (D,x) ∈ D ×X such668

that x ∈ D, define u(D,x) = t(D,x)+β. Then u(D,x) ≥ 0. For any (D,x) ∈ D×X669

such that x 6∈ D, define u(D,x) = 0.670

Then G(ρ : u) = ρ · t + β|D| ≤ ρ′ · t + β|D| = G(ρ′ : u) for all ρ′ ∈ Pl and

G(ρ : u) = ρ · t + β|D| < ρ′′ · t + β|D| = G(ρ′′ : u) for some ρ′′ ∈ Pl. This implies

that

G(ρ : u) ≤ inf
ρ′∈Pl

G(ρ′ : u).

Moreover, there must exist D ∈ D such that u(D,x) 6= u(D, y) for some x, y ∈ D.671

Otherwise for each D ∈ D there exists vD such that u(D,x) = vD for all x ∈ D.672

Then for any ρ̂ ∈ P, G(ρ̂ : u) =
∑

D∈D vD because
∑

x∈D ρ̂(D,x) = 1. This673

contradicts with the fact that G(ρ : u) < G(ρ′′ : u).674

Hence, G(ρ : u) ≤ infρ′∈Pl
G(ρ′ : u) and u ∈ U . This contradicts with Aggre-675

gated Logit Rationality.676

E.2 Proof of Corollaries 2 and 3677

By Proposition 1, the relative interior of the set of random utility functions is the678

set of mixed logit functions with polynomials of degree d = 1 (i.e., pd(x) = x) if and679

only if X is affinely independent. Hence Corollary 2 holds.680

By modifying the proof of Proposition 1, it is easy to show that for each π ∈ Π681

there exists a sequence {ρn} of general logit functions such that ρn → ρπ. Hence682

by Lemma 3, the relative interior of the set of random utility functions is the set of683

general mixed logit functions. (This result holds without any condition on X except684

for the finiteness.) Hence Corollary 3 holds.685
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