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Abstract

This paper proposes an empirical model of dynamic discrete choice to allow
for non-separable time preferences, generalizing the well-known Rust (1987)
model. Under weak conditions, we show the existence of value functions and
hence well-defined optimal choices. We construct a contraction mapping of the
value function and propose an estimation method similar to Rust’s nested fixed
point algorithm. Finally, we apply the framework to the bus engine replacement
data. We improve the fit of the data with our general model and reject the null
hypothesis that Harold Zuercher has separable time preferences. Misspecifying
an agent’s preference as time-separable when it is not leads to biased inferences
about structure parameters (such as the agent’s risk attitudes) and misleading
policy recommendations.
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1 Introduction

It is well-known that in the standard model of expected utility with separable time

preferences, an agent’s risk preference and her preference for intertemporal substitu-

tion are both captured by the curvature of her Bernoulli utility function. As a re-

sult, greater risk aversion is correlated with greater complementarity of consumption

across different time periods. Risk and time however are two distinct phenomena

and it would be natural to have different preferences over the two. Furthermore,

time-separable models are widely recognized for imposing an unrealistic constraint

on agents’ preferences regarding the timing of uncertainty resolution. As Rust (1994)

pointed out, time-separable “expected-utility models imply that agents are indifferent

about the timing of the resolution of uncertain events, whereas human decision-makers

seem to have definite preferences over the time at which uncertainty is resolved.”

Models with non-separable time preferences such as Epstein and Zin (1989) al-

low for a clean separation of the two: the elasticity of intertemporal substitution is

independent of risk aversion. Moreover, the models allow agents to have nontrivial

preferences regarding the timing of the resolution of uncertainty, as suggested by the

experimental literature (see, e.g., Nielsen (2020), Meissner and Pfeiffer (2022)). These

feature makes them popular in fields such as macroeconomics and finance, where they

have been used to explain phenomena such as the equity premium puzzle (see, e.g.,

Mehra and Prescott (1985) and Bansal and Yaron (2004)).

However, current empirical research has yet to incorporate non-separable prefer-

ences within the dynamic discrete choice (DDC) framework. Misspecifying an agent’s

preference as time-separable when it is not can result in biased inferences about struc-

tural primitives and misleading policy recommendations. Our paper aims to bridge

this gap. We begin by outlining a set of theoretical results crucial for empirical

analysis in the DDC framework. Following this, we introduce an empirical model of

dynamic discrete choice that incorporates non-separable time preferences, extending

the well-known bus engine replacement model analyzed in Rust (1987). Our model

includes the standard time-separable model, commonly employed in the DDC liter-
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ature, as a special case. This is an important and empirically relevant feature as it

allows us to statistically test whether the decision maker (Harold Zuercher in the bus

engine replacement example) has separable time preferences or not.

While our model allows for more general and richer time preferences, we show that

it can be solved and estimated similarly as the standard DDC model. In the paper,

we first show that agents with our nonseparable time-preferences have well-defined

optimal dynamic choices. Based on the Bellman equation with our nonseparable time-

preferences, we first prove the existence of the value function. Specifically, we apply

lattice theory and Tarski’s fixed point theorem to show the existence of the smallest

and largest fixed points of a mapping in the space of value functions. This allows us

to use a simulated nested fixed point algorithm to find the smallest and largest fixed

points for model estimation; if the two coincide, then the value function is unique.

We also provide general sufficient conditions that ensure a contraction mapping and

uniqueness of the value function. These conditions reduce to the standard β < 1

condition for separable preferences but we also consider specific parametrizations

(CARA and CRRA) of Epstein-Zin preferences.

We apply our framework to the bus engine replacement data in Rust (1987). In

his original work, Rust assumes that the manager Harold Zuercher is risk neutral

with separable time preferences. At the beginning of each period, Harold makes

a dynamic choice for each bus engine by trading off between an immediate lump

sum cost of replacing it and higher maintenance costs for keeping it. In addition to

allowing Harold to have non-separable time preferences, we generalize the Rust model

in several other aspects. We assume that the manager may be risk-averse and may

benefit from operating the bus (e.g., collecting passenger fares proportional to the

additional mileage in each month).

We estimate the model with non-separable and separable time preferences, respec-

tively, under the CARA parameterization. Our estimation results of the non-separable

model suggest that the agent is likely to prefer late resolution of uncertainty. Because

the model with separable preferences is nested in the non-separable model, comparing

the likelihood from the two models is straightforward, and we are able to statistically
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reject the null hypothesis that Harold has separable time preferences. Moreover,

our estimates for the agent’s risk attitudes and the payoff parameters are signifi-

cantly different when allowing for non-separable preferences. We find that, given

the time-separable model, the risk preference parameter is overestimated, while the

maintenance cost per mileage is underestimated.

To better interpret the model estimates, we compute the certainty equivalent given

different model specifications. Specifically, we consider a counterfactual scenario in

which a subsidy program assists the agent in smoothing revenue across periods. We

solve for the monetary payoff that makes the agent (Harold) indifferent when the un-

certainty about incremental mileage in each period is eliminated. Our general model

with non-separable preferences implies that Harold would accept a sure payment of

$120 each month to stay indifferent. In contrast, the certainty equivalent under the

misspecified model with separable preferences is $61.6, which is 48.7% lower than the

value implied by the general model.

Related Literature There are many empirical applications of DDC models. See

Miller (1984) and Buchholz et al. (2021) for dynamic choices of workers, Pakes (1986)

for patenting decisions, Crawford and Shum (2005), Hendel and Nevo (2006), and

Gowrisankaran and Rysman (2012) for dynamic consumer demand. As far as we

know, there is no existing work in the DDC literature that has incorporated non-

separable time preferences. Our main methodological advance is in developing a

feasible specification of DDC models with EZ preferences, arguably the most pop-

ular model of non-separable time preferences. Following Rust (1987), we propose a

nested fixed point algorithm for estimating our model. Our proposed algorithm can

be applied to estimate models with separable and non-separable preferences, and it

therefore provides a useful tool for testing various model specifications.

The use of non-separable models has been common in the macrofinance literature

since Kreps and Porteus (1978) and Epstein and Zin (1989). For example, Bansal and

Yaron (2004) provide a unified explanation for several long-standing puzzles in asset

markets using a recursive utility model. Epstein et al. (2014) explore the quantitative
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implications of recursive utility on temporal resolution of uncertainty. We find that

the risk preference parameter is significantly overestimated under the misspecified

model with separable preferences, suggesting the importance of separating preferences

for risk and intertemporal substitution.

In the theoretical literature, Frick et al. (2019) provide an axiomatic analysis of

dynamic random utility, focusing on the history-dependency of choices and the type of

randomness inherent in these models. Lu and Saito (2020) provide a theoretical model

of dynamic stochastic choice in which the agent has non-separable preferences. They

provide axiomatic foundations and also consider EZ preferences in an application

focusing on its choice-theoretic implications. In contrast, our paper focuses on the

DDC model as the workhorse model for analyzing dynamic decision processes in

structural econometrics.

The rest of the paper is organized as follows. We describe EZ preferences and the

dynamic discrete choice model setup in Section 2. Theoretical results regarding the

existence and uniqueness of the value function are provided in Section 3. We discuss

the estimation strategy and our empirical application in Section 4 and 5, respectively.

Section 6 concludes. The proofs are delegated to the appendices.

2 Non-separable Time Preferences

2.1 Setup

In this section, we introduce non-separable time preferences in an infinite-horizon

recursive framework. First, recall that under standard risk and intertemporal prefer-

ences, the utility function is given by

Ec

[
(1− β)u (c) + βEv|c [v]

]
. (1)

Here, u is a strictly increasing utility function over a set C of real-valued payoffs,

β ∈ [0, 1] is the discount factor and v is the future continuation value.1 Let U denote

1Note that since the value function is recursive, this is equivalent to u (c) + βv as the 1− β term
is a scalar that can be factored out.
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the range of u. It is easy to see here that risk is additively-separable across time.2

Following Kreps and Porteus (1978) and Epstein and Zin (1989), we consider a

generalization of standard preferences that allow for non-separable time preferences,

i.e., where the risk is not additively-separable across time.3

We consider the following representation:

Ec

[
ϕ
(
(1− β)u (c) + βϕ−1

(
Ev|c [v]

))]
, (2)

where ϕ is a strictly increasing aggregator function that is either concave or convex.4

Refer to Section 2.2 for parametric examples of the utility function (2), which will

aid in understanding the general formulation presented in (2).

As we will see below, the curvature of ϕ captures the agent’s attitudes towards

how risk is resolved across different time periods. When ϕ is linear, this reduces to the

standard time-separable preferences, which implies the the indifference to the timing

of resolution of uncertainty, otherwise, risk cannot be additively separated across time

as in Equation (1). Note that although the above formula is recursive and assumes

infinite periods, the functional form can be easily applied to finite time periods by

calculating utilities from the last period via backwards induction.

The essential difference from separable preferences is the role of the aggregator

ϕ, which allows for greater flexibility in modeling risk and time preferences. In fact,

agents may exhibit non-trivial preferences over when risk is resolved. Consider the

two lotteries shown in Figure 1. Both lotteries are the same in terms of probabilities

and outcomes: they differ only in the timing of when uncertainty is resolved. In the

left lottery P , the uncertainty about period 2 outcome (10 or 0) is resolved in period

1. In the right lottery Q, on the other hand, the uncertainty is resolved in period 2.

If the agent always prefers a lottery where uncertainty is resolved in period 1 (e.g.,

P ) to a lottery where uncertainty is resolved in period 2 (e.g., Q), then we say that

2To see this point, notice that because of the linearity of the model, (1) reduces to (1−β)Ec[u(c)]+
βEv[v], where the first expectation captures the risk over current consumption; while the second
expectation captures the risk over future consumption.

3Due to the non-linearity of ϕ, the utility function (2) cannot be expressed as the additive form
of two expectations, unlike the time-separable model described in footnote 2.1.

4Epstein and Zin (1989) consider an even more general formulation.
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he prefers early resolution of uncertainty. If the agent always prefers a lottery where

uncertainty is resolved in period 2 (e.g. Q) to a lottery where uncertainty is resolved

in period 1 (e.g. P ), then we say he prefers late resolution of uncertainty. If he is

indifferent between the two lotteries, then we say that he is indifferent to the timing

of resolution of uncertainty.

Figure 1: Early vs. late resolution of uncertainty

In our model, preferences for the timing of resolution of uncertainty are fully

captured by the the curvature of of ϕ. To see why, consider the example above.

Applying (2) to two-periods, the value of lottery P is given by

V (P ) = E [ϕ ((1− β)u (5) + βz)]

where z is a random variable that takes on either (1− β)u (0) or (1− β)u (10). Note

here that all uncertainty about z is resolved in the first period. On the other hand,

the value of lottery Q is given by

V (Q) = ϕ
(
(1− β)u (5) + βϕ−1 (E [ϕ (z)])

)
Here, the uncertainty about z is not resolved until the second period, so the expecta-

tion is taken inside the function ϕ−1 (·). If we define ϕ̃ (z) := ϕ ((1− β)u (5) + βz),

then the agent prefers early resolution of uncertainty if V (P ) ≥ V (Q) or

E
[
ϕ̃ (z)

]
≥ ϕ̃

(
ϕ−1 (E [ϕ (z)])

)
ϕ̃−1

(
E
[
ϕ̃ (z)

])
≥ ϕ−1 (E [ϕ (z)])
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which holds if ϕ̃ is less concave than ϕ.

We can now generalize how the curvature of ϕ captures preference for early or

late resolution of uncertainty. Recall that the Arrow-Pratt measure of a function ϕ

is given by

Aϕ (z) := −ϕ
′′ (z)

ϕ′ (z)
.

Proposition 1. The agent prefers early (late) resolution of uncertainty iff for all

y ∈ U , Aϕy (z) ≤ Aϕ (z) (resp. Aϕy (z) ≥ Aϕ (z)) where ϕy (z) := ϕ ((1− β) y + βz).

Proof. See Strzalecki (2013) and Stanca (2023).5

To see the condition in Proposition 1 more explicitly, note that

Aϕy (z) = βAϕ ((1− β) y + βz)

so the agent prefers early resolution of uncertainty iff

βAϕ ((1− β) y + βz) ≤ Aϕ (z)

for all y ∈ U . The condition for preference for late resolution is the same but with

the inequality reversed.

Preferences over the timing of resolution of uncertainty can play an important role

in agents’ decision making process in dynamic environments. Different choices are

not only associated with different levels of uncertainty, but are also related to when

that uncertainty is realized over time. For example, in Rust’s bus engine replacement

problem, replacing an engine entails current (sure) cost but makes the future uncer-

tainty of engine failure resolved earlier. On the other hand, not replacing the engine

leads to the future uncertainty of engine failure resolved later.

There is no conclusive experimental evidence on whether individuals have prefer-

ence for early or late resolution of uncertainty. In fact, agents’ preference about the

timing of resolution of uncertainty could be highly context-dependent. For example,

when uncertainty is over positive consumption levels, a preference for early resolution

may be more reasonable. Indeed, in the macro-finance literature, the assumption of

5In Strzalecki (2013), this result is presented in the context of ambiguity.
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preference for early resolution of uncertainty is often imposed. On the other hand,

in cases when payoffs can be very negative, individuals may prefer to avoid early

resolution of uncertainty. As a heuristic example, consider a pronouncement of a

fatal disease from a doctor. Some patients may prefer to learn the news later because

this information can induce a great deal of disappointment, fear and anxiety. These

negative emotions, while may not have instrumental values, could still directly affect

their utility.6

2.2 Parametric Special Cases

We now present several parametrizations of non-separable time preferences that have

been used in the literature.

2.2.1 CRRA Epstein-Zin

By far the most common parametric form of Epstein-Zin preferences is when both u

and ϕ have CRRA (or power) functional forms. Here, the utility is given by u (c) =

c1−ρ and the time aggregator is given by

ϕ (z) =
(
z

1
1−ρ

)1−α

= z
1−α
1−ρ

where α ≤ 1 and ρ ≤ 1 are parameters that characterize intertemporal and risk

preferences respectively. Under these assumptions, the value function (2) yields the

following form:

Ec

[(
(1− β) c1−ρ + βEv|c [v]

1−ρ
1−α

) 1−α
1−ρ

]
. (3)

To see how ρ and α characterize intertemporal and risk preferences, first consider

the case where there is no risk so we can remove the expectations in (2). Redefining

a new value function as ṽ = ϕ−1 (v), we obtain from (2) that the new value function

is given by

(1− β)u (c) + βṽ = (1− β) c1−ρ + βṽ

6Note that in the definition of a preference for the timing of resolution of uncertainty, the infor-
mation must be non instrumental, i.e., the agent cannot do anything given the information.
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where intertemporal preferences are determined solely by ρ. Here, ρ measures the

elasticity of substitution, defined as the percentage change of the growth rate of

consumption (i.e. ct+1/ct) to the percentage change of the intertemporal marginal

rate of substitution (MRS):7

d log (ct+1/ct)

d logMRSt,t+1

= ρ−1. (4)

For risk preferences, consider a one-time shock that resolves within a single-period

followed by zero consumption forever. It straightforward to see that the Bernoulli

utility in (3) reduces to c1−α, which has standard constant relative risk aversion

(CRRA) parameter α. The fact that both intertemporal and risk preferences can be

so neatly separated here (which is not possible with standard separable preferences)

speaks to its popularity in the literature.

Proposition 1 reduces to the following in this parametrization.

Corollary 1. An agent with CRRA Epstein-Zin preferences prefers early (late) res-

olution of uncertainty iff ρ ≤ α (resp. ρ ≥ α) iff ϕ is concave (resp. convex).

Proof. Since ϕ (z) = z
1−α
1−ρ ,

Aϕ (z) =

(
1− 1− α

1− ρ

)
z−1,

Aϕy (z) = β

(
1− 1− α

1− ρ

)
((1− β) y + βz)−1 .

Thus, Aϕy (z) ≤ Aϕ (z) iff
1−α
1−ρ

≤ 1 or ρ ≤ α. The result follows from Proposition 1

and noting that ϕ is concave (convex) iff ρ ≤ α (resp. ρ ≥ α).

2.2.2 CARA Epstein-Zin

An alternative parameterization is when u has the CARA (or exponential) functional

form. Here, the utility is given by u (c) = uρ (c) where

uρ (c) := ρ−1
(
1− e−ρc

)
(5)

7Recall that MRS is defined as u′ (ct+1) /u
′ (ct).
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and the time aggregator is given by

ϕ (z) = uα
(
u−1
ρ (z)

)
= α−1

(
1− (1− ρz)

α
ρ

)
for parameters α ≥ 0 and ρ ≥ 0 that characterize intertemporal and risk preferences.

Under these assumptions, the value function (2) yields the following form

Ec

[
α−1

(
1−

(
(1− β) e−ρc + β

(
1− Ev|c [αv]

) ρ
α

)
α
ρ

)]
. (6)

These preferences have appeared in Skiadas (2009) and are exactly the CARA analog

of CRRA Epstein-Zin preferences. One advantage of this formulation is that it allows

for negative payoffs, which CRRA cannot accommodate. For example, in Rust (1987),

the agent needs to pay a large cost when choosing to replace the bus engine resulting

in net negative revenue that period.

As in CRRA Epstein-Zin, the parameters ρ and α characterize intertemporal and

risk preferences. First, in the absence of risk, we can follow the same reasoning as for

CRRA Epstein-Zin above by redefining a new value function ṽ = ϕ−1 (v). We now

obtain from (2) that the new value function is given by

(1− β)u (c) + βṽ = (1− β) ρ−1
(
1− e−ρc

)
+ βṽ

so intertemporal preferences are determined solely by ρ. Here, in contrast to CRRA

Epstein-Zin, ρ measures the responsiveness of the difference in consumption between

two periods (i.e. ct+1 − ct) to the percentage change of MRS:

d (ct+1 − ct)

d logMRSt,t+1

= ρ−1. (7)

For risk preferences, as before, consider a one-time shock that resolves within a

single-period followed by zero consumption forever. It straightforward to see that

the Bernoulli utility in (6) has Arrow-Pratt coefficient

(1− β)α + βeρcρ

(1− β) + βeρc
.

This is a convex combination between α and ρ where the weight on α is decreasing in
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β and consumption c. Note that holding all else constant, risk aversion is increasing

in α. Unlike CRRA Epstein-Zin preferences, while intertemporal preferences depend

solely on ρ, risk preferences here depend on both α and ρ.

Proposition 1 reduces to the following in this parametrization.

Corollary 2. An agent with CARA Epstein-Zin preferences prefers early (late) res-

olution of uncertainty iff ρ ≤ α (resp. ρ ≥ α) iff ϕ is concave (resp. convex).

Proof. Since ϕ (z) = α−1
(
1− (1− ρz)

α
ρ

)
,

Aϕ (z) =
α− ρ

1− ρz
,

Aϕy (z) =
β (α− ρ)

1− ρ ((1− β) y + βz)
.

Thus, Aϕy (z) ≤ Aϕ (z) iff ρ ≤ α (noting that y ≤ ρ−1 given the range of u = uρ).

The result follows from Proposition 1 and noting that ϕ is concave (convex) iff ρ ≤ α

(resp. ρ ≥ α).

2.2.3 Separable Preferences

Finally, both CRRA and CARA Epstein-Zin preferences nest separable preferences

as special cases. When α = ρ in either case, the time aggregator becomes linear, i.e.

ϕ (z) = z, and the value function becomes

(1− β)Ec [u (c)] + βEv [v] (8)

where u is either of the CRRA or CARA functional form. Furthermore, when α =

ρ→ 0 under either, u (c) = c so this reduces to the separable risk-neutral case. This

is the specification commonly adopted in many empirical studies, including the engine

replacement model in Rust (1987).

The fact that separable preferences, i.e. α = ρ, is nested in our more general

parametrizations allows us to statistically test whether the agent has separable pref-

erences. While separability provides computational convenience, misspecifying the

agent’s preference as additively time separable when it is not can lead to systematic
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biases in inferences of the structural primitives of the model. We see this for the case

of CARA Epstein-Zin preferences in Section 5.

3 Dynamic Discrete Choice: General Setup and

Theoretical Results

We now apply the general non-separable preferences defined in the previous section

to a general dynamic discrete choice framework. We provide two key theoretical

results. The first result pertains to the existence of a value function, while the second

addresses its uniqueness.

3.1 General Setup

Denote the set of states by X and sets of actions by D. We assume D is finite. The

timing of our setup is as follows. At the beginning of period t, the state xt realizes

and then an idiosyncratic shock εt realizes. The agent then makes a choice dt ∈ D.

Finally, the uncertainty about another variable ∆t, which affects the current period

consumption is realized. The agent consumes the realized consumption that period,

which is given by

c(dt, xt,∆t, εt) = π(dt, xt,∆t) + εt(dt), (9)

where π(dt, xt,∆t) represents the deterministic consumption. We assume that εt(dt) is

a random shock for alternative dt. The vector of random shocks εt = (εt(1), · · · , εt(|D|))

is drawn from a cumulative distribution function G(·).

We represent the agent’s optimization problem using the Bellman’s equation as

follows.

V (xt, εt) = max
d∈D

{
E∆t|d,xt

[
ϕ

(
(1− β)u

(
c (d, xt,∆t, εt)

)
+ βϕ−1

(
Ext+1,εt+1|d,xt,∆t [V (xt+1, εt+1)]

))]}
. (10)

The first expectation is due to uncertainty in the current-period payoff shock ∆t, and
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the second expectation is due to uncertainty in the future state (xt+1, εt+1). We follow

the dynamic discrete choice literature to assume that (1) the random shock ε’s are

independent over time and (2) conditional on the current state xt and choice dt, the

future state xt+1 is independent of the unobserved state εt. Given these assumptions,

the distribution of future state (xt+1, εt+1) does not depend on εt. We therefore omit

εt in the second expectation Ext+1,εt+1|d,xt,∆t .

From the Bellman’s Equation in (10), we define the ex-ante value function as

V (xt+1) =

∫
V (xt+1, εt+1)G(εt+1). (11)

Note that V (xt+1) represent the agent’s expected value at the beginning of period

t+1 before the realization of the future shock εt+1. If the agent chooses dt, the value

she receives can be represented as

v (dt, xt, εt)

= E∆t|dt,xt

[
ϕ

(
(1− β)u

(
c (dt, xt,∆t, εt)

)
+ βϕ−1

(
Ext+1|dt,xt,∆t [V (xt+1)]

))]
.

(12)

Note that v (dt, xt, εt) is essentially the “choice-specific” value function defined in the

dynamic discrete choice literature. The value functions in Equation (12) are non-

separable in random shocks εt even if we assume that those shocks enter the current

payoff additively as in Equation (9). In the special case when ϕ is linear and the agent

is risk-neutral, εt is additively separable from other expressions in the value function

and this reduces to the standard discrete choice setup.

The decision maker’s optimal choice is defined as

d∗t = argmax
d∈D

v(d, xt, εt),

which leads to a Conditional Choice Probability (CCP) of choosing action dt

p(dt|xt) =
∫

1

{
dt ∈ argmax

d∈D
v(d, xt, εt)

}
dG(εt). (13)

With the non-separability of random shocks, the CCP in Equation (13) and the ex-

ante value function in Equation (11) do not have closed-form solutions even if we
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assume that ε’s follow extreme value distributions.

Combining Equations (11) and (12), we can define a value function iteration op-

erator T in the space of the ex-ante value functions. To simplify notation, define

r(dt, xt,∆t, εt, V ) := ϕ
(
(1− β)u (c (dt, xt,∆t, εt)) + βϕ−1

(
Ext+1|dt,xt,∆tV (xt+1)

))
.

Then the operator T is defined as

T (V )(xt) =

∫
max
dt∈D

{∫
r(dt, xt,∆t, εt, V )dFdt,xt(∆t)

}
dG(εt), (14)

where Fdt,xt(∆t) represents the cumulative distribution function of ∆t given the cur-

rent state xt and the agent’s choice dt. The ex-ante continuation value V is obtained

as a solution of the functional equation T (V ) = V .

Remark 1. When ϕ is a linear function, this model reduces to a standard dynamic

discrete choice model with time-separable preferences and the choice-specific value

function becomes (assuming ϕ(x) = x for simplicity)

v (dt, xt, εt) = (1− β)E∆t|dt,xt

[
u
(
c (dt, xt,∆t, εt)

)]
+ βExt+1|dt,xt

[
V (xt+1)

]
. (15)

Note that in this case, the current-period payoff shocks ∆t are completely separated

across time.

Remark 2. When there is no current-period uncertainty (i.e., ∆t does not enter the

utility), the choice-specific value function can be simplified to

v (dt, xt, εt) = ϕ

(
(1− β)u

(
c (dt, xt, εt)

)
+ βϕ−1

(
Ext+1|dt,xt [V (xt+1)]

))
. (16)

Note that this does not reduce to the standard dynamic discrete choice setup. The

reason is that there are uncertainties with respect to the future state (xt+1, εt+1), and

expectations with respect to these uncertainties are taken in between the aggregators

ϕ−1 and ϕ. Whenever preferences are non-separable so ϕ is non-linear, Equation (16)

differs from standard dynamic discrete choice model even if there is no current-period

uncertainty.
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3.2 Existence: Value Function

In this section, we establish existence of a value function. We show that the operator

T defined in Equation (14) always has a fixed point under some mild assumptions.

Moreover, we demonstrate how to obtain the largest and smallest fixed points.

Let π and π̄ denote the smallest and largest possible value of profit π. Define

v∗ := max {E [ϕ (u (π̄ + ε̂))] , ϕ (E [u (π̄ + ε̂)])} ,

v∗ := min {E [ϕ (u (π + ε))] , ϕ (E [u (π + ε)])} ,

where ε̂ := maxd∈D εd. These are bounds for the largest and smallest possible values

of continuation values. Suppose v∗ and v∗ are both finite and let V be the set of value

functions bounded between some v ≤ v∗ and v̄ ≥ v∗, that is, the set of V such that

v ≤ V (x) ≤ v̄ for all x ∈ X .

We first show that T : V → V is well-defined (see Appendix A.1). We then define

a complete lattice (V ,≥), where ≥ is the partial order on V such that V ≥ V ′ if

V (x) ≥ V ′ (x) for all x ∈ X .8 It is easy to see that T is monotonic, that is, V ≥ V ′

implies T (V ) ≥ T (V ′).

Lemma 1. T is monotonic.

Proof. Follows from the fact that u and ϕ are all increasing functions so r is also

increasing in V .

Since T is monotonic, Tarski’s fixed point theorem (see Aliprantis and Border

(2006)) guarantees that the set of fixed points of T is non-empty and a complete

lattice. Moreover, if we start iterating from the smallest and largest possible values

of V , then we obtain the respective smallest and largest fixed points of T . We

summarize this as follows.

Theorem 1. Suppose v∗ and v∗ are finite and let V be the set of functions bounded

by some v ≤ v∗ and v̄ ≥ v∗. Then T : V → V has a fixed point. Moreover, limn T
n (v)

and limn T
n (v̄) are its smallest and largest fixed points respectively.

8A partially ordered set (V,≥) is a complete lattice if every subset has both a supremum and an
infimum in V according to the partial order ≥.
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Proof. See Appendix A.1.

Existing results assume separable time preferences. Our contribution is demon-

strating that for non-separable time preferences, we can apply Tarski’s theorem as

long as the T mapping is monotonic (i.e. increasing) in the value function.9 This

also provides a way to compute the smallest and largest value functions by iterating

T . Although this does not guarantee a unique fixed point, we can easily check by

calculating the smallest and largest fixed points and seeing if they coincide.

How about specific parametrizations of non-separable preferences? Theorem 1

implies the following for CRRA Epstein-Zin preferences.

Corollary 3. Suppose the agent has CRRA Epstein-Zin preferences. If E [ε] is finite,

then T has a fixed point.

Proof. Since both u and ϕ are both power functions, they both yield positive values

so v∗ must be finite. Next, note that

E [u (π̄ + ε̂)] = E
[
(π̄ + ε̂)1−ρ] ≤ (π̄ + E

[
max
d∈D

εd

])1−ρ

where the inequality follows from the fact that ρ ≤ 1. Since maxd∈D εd ≤
∑

d∈∈D εd,

it has finite expectation. The reasoning for E [ϕ (u (π̄ + ε̂))] = E
[
(π̄ + ε̂)1−α] is sym-

metric, so v∗ is finite and the result follows from Theorem 1.

With CARA Epstein-Zin preferences, Theorem 1 implies the following.

Corollary 4. Suppose the agent has CARA Epstein-Zin preferences. If E [e−tε] is

finite for all t ∈ R, then T has a fixed point.

Proof. Since ϕ = uα ◦ u−1
ρ where uα is CARA, ϕ is bounded above by α−1. Thus,

v∗ = α−1 is finite. Next, note that

E [u (π + ε)] = E [uρ (π + ε)] = ρ−1
(
1− e−ρπE

[
e−ρε

])
which is finite given the assumption. The reasoning for E [ϕ (u (π + ε))] = E [uα (π + ε)]

is symmetric, so v∗ is finite and the result follows from Theorem 1.

9Jia (2008) also uses Tarski’s fixed point theorem but for a different problem (entry game). She
also assumes separable time preferences.
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The condition in Corollary 4 is weak; it is equivalent to saying that the moment

generating function for −ε always exists. This is true if ε is Normal or Extreme-Value

distributed, which we note below.

Corollary 5. Suppose the agent has CARA Epstein-Zin preferences and ε either has

a Normal or Extreme Value Type I distribution. Then starting with the initial point

v∗ = α−1, limn T
n (v∗) converges to its largest fixed point.

Proof. Note that both the Normal distribution and the Extreme Value Type I (Gum-

bel) distribution have well-defined (finite) moment generating functions. It is easy to

see that the same holds for −ε.

3.3 Uniqueness: Contraction Mapping

In this section, we present conditions under which T constitutes a contraction, en-

suring the uniqueness of the value function. First, recall from Proposition 1 that

ϕy (z) = ϕ ((1− β) y + βz) and define

ψy (z) := ϕy

(
ϕ−1 (z)

)
.

Recall that π and π̄ are the smallest and largest possible value of profit π. Also recall

that v and v̄ are the bounds of the value function (which can be infinite). We now

present our second theorem.

Theorem 2. T is a contraction mapping if

M := E

[
max
d∈D

sup
π∈[π,π̄],z∈[v,v̄]

ψ′
u(π+εd)

(z)

]
< 1 (17)

Proof. See Appendix A.2.

Theorem 2 implies that when the bound M < 1, the ex-ante value function V (·)

is a unique fixed point of the contraction mapping T as defined in equation (14). For

intuition, note that ψy (z) captures the value given current period utility y and future

continuation value z. For instance, if ϕ (z) = z as in the standard separable case,

18



then

ψy (z) = (1− β) y + βz.

In this case, ψy (·) is linear so ψ′
y (z) = β. This immediately yields the standard result

that coincides with Rust’s condition for a contraction mapping.

Corollary 6. Suppose the agent has separable preferences. If β < 1, then T is a

contraction mapping.

In general, when the agent does not have separable preferences, the bounds on

ψ′
y (z) would depend on the curvature of ϕ. More explicitly, we have

ψ′
y (z) =

ϕ′
y (z̃)

ϕ′ (z̃)

where z̃ = ϕ−1 (z). We thus have

ψ′′
y (z) =

ϕ′
y (z̃)

ϕ′ (z̃)2
(
Aϕ (z̃)− Aϕy (z̃)

)
.

From Proposition 1, this implies that ψ′
y (·) is increasing (decreasing) if the agent

prefers early (resp. late) resolution of uncertainty. This implies the following.

Corollary 7. Suppose the agent prefers early (late) resolution of uncertainty. If

E
[
supd∈D,π∈[π,π̄] ψ

′
u(π+εd)

(v̂)
]
< 1 where v̂ = v̄ (resp. v̂ = v), then T is a contraction

mapping.

Proof. Follows from Proposition 1 and Theorem 2.

Note that this bound can be further simplified if we know whether ϕ is convex

or concave. For instance, if ϕ is convex, then ψ′
y (z) is increasing in y so we can use

π = π̄ as the bound when evaluating M in Equation (17). The case for concave ϕ is

symmetric.

How about specific parametrizations of non-separable preferences? Theorem 2

implies the following for CRRA Epstein Zin preferences.

Corollary 8. Suppose the agent has CRRA Epstein-Zin preferences. If ρ ≤ α and

β
1−α
1−ρ < 1, then T is a contraction mapping.
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Proof. Since ϕ (z) = z
1−α
1−ρ ,

ψ′
y (z) =

β
(
(1− β) y + βz

1−ρ
1−α

) 1−α
1−ρ

−1

(
z

1−ρ
1−α

) 1−α
1−ρ

−1

= β
(
(1− β) yz

1−α
1−ρ + β

) 1−α
1−ρ

−1

.

If ρ ≤ α, then 1−α
1−ρ

− 1 ≤ 0. Since y ≥ 0, this means

ψ′
y (z) ≤ β (β)

1−α
1−ρ

−1 = β
1−α
1−ρ .

Thus β
1−α
1−ρ < 1 ensures a contraction mapping.

Note that in the other ρ > α case, we can still use Theorem 2 to obtain a suffi-

cient condition for a contraction mapping but the bound M in Equation (17) would

depend on the error distribution. The reason we are able to obtain a simple sufficient

condition for when the agent prefers early resolution of uncertainty (ρ ≤ α) is that

the value function under CRRA Epstein-Zin is bounded below (since u(c) has to be

non-negative). The fact that values are bounded below and ϕ is concave given ρ ≤ α

(see Corollary 1), allows us to create bounds to ensure a contraction mapping.

With CARA Epstein-Zin preferences, Theorem 2 implies the following.

Corollary 9. Suppose the agent has CARA Epstein-Zin preferences. If ρ ≥ α and

β
α
ρ < 1, then T is a contraction mapping.

Proof. Since ϕ = uα ◦ u−1
ρ ,

ψ′
y (z) =

β
(
(1− β) (1− ρy) + β (1− αz)

ρ
α

)α
ρ
−1

(
(1− αz)

ρ
α

)α
ρ
−1

= β

(
(1− β)

1− ρy

(1− αz)
ρ
α

+ β

)α
ρ
−1

.

Since ρ ≥ α, α
ρ
− 1 ≤ 0 so

ψ′
y (z) ≤ β

(
β

α
ρ
−1
)
= β

α
ρ .
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Thus β
α
ρ < 1 ensures a contraction mapping.

In other words, for an agent with CARA Epstein-Zin preferences and prefers late

resolution of uncertainty (i.e. ρ ≥ α), T is a contraction mapping as long as β is

sufficiently small (i.e. β
α
ρ < 1). The fixed point would be unique. As with the

CRRA Epstein-Zin case, we can still use Theorem 2 for the case when ρ < α but

the bound M would again depend on the error distribution. Note that in contrast

to CRRA Epstein-Zin, values are bounded above under CARA Epstein-Zin, so it is

when the agent prefers late resolution of uncertainty (ρ ≥ α) where we can obtain

simple sufficient conditions for a contraction mapping.

4 Estimation

We propose to use an estimation approach similar to Rust (1987)’s Nested Fixed Point

algorithm to estimate the structural parameters in the dynamic model described in

Section 3.1.10 In our model, the choice-specific value function is not additively separa-

ble in the idiosyncratic shock ε due to the nonlinear nature of the non-separable time

preferences. Therefore, the well-known multinomial logit formula for the conditional

choice probabilities and the McFadden’s social surplus function are no longer appli-

cable. We describe in this section how we obtain the conditional choice probabilities

using simulation methods. Our nested fixed point algorithm contains an inner loop

that solves a DDC problem for a given set of parameter values and an outer loop that

maximizes the log-likelihood.

We focus on the estimation of two parameterizations of the model introduced in

Section 2.2. Let θ = (α, ρ, θπ) denote the vector of parameters to be estimated, where

α and ρ are parameters in the utility function u and aggregator function ϕ in either

the CRRA or CARA Epstein-Zin case. These two parameters capture the agent’s risk

10Since Rust (1987), several estimation methods for standard DDC models became available,
such as the CCP approach of Hotz and Miller (1993), the nested pseudo-likelihood approach of
Aguirregabiria and Mira (2002) and their extensions to various settings. See Aguirregabiria and Mira
(2010) for a survey of methodologies. Recently, Igami (2017) and Igami and Uetake (2020) extend
the Nested Fixed Point algorithm to dynamic oligopoly games with sequential or stochastically
alternating moves.
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and intertemporal preferences. θπ represents the parameters in the payoff function

π(dt, xt,∆t). Throughout the estimation, we assume that the value of the discount

factor β is known to the econometrician.11 Let xit and dit denote the observable

state and choice for agent i = 1, 2, · · · , N at period t = 1, 2, · · · , T . ∆it represents

the realization of current period uncertainty. We derive the likelihood of the choice

pattern and state transition process observed in the data:

LL(θ) =
N∑
i

log

(
Pr(di1|xi1; θ)

T∏
t=2

Pr(dit|xit; θ)Pr(xit|dit−1, xit−1,∆it−1)

)
. (18)

Note that Pr(dit|xit; θ) represents the choice probability conditional on the observ-

able state xit and Pr(xit|dit−1, xit−1,∆it−1) represents the state transition probability,

which can be estimated separately outside of the structural model.

For a given parameter θ, we solve the ex-ante value function V (xt) through an

iterative procedure outlined as follows.

(1) Initiate the iteration process with a chosen V 0(xt). Denote the value function

at the r-th iteration as V r(xt).

(2) Given V r(xt), compute the choice-specific value function v(dt, xt, ε
s) for a

random draw εs from G:

E∆t|dt,xt

[
ϕ

(
(1− β)u

(
c (dt, xt,∆t, ε

s(dt))
)
+ βϕ−1

(
Ext+1|dt,xt,∆t [V

r(xt+1)]
))]

.

(3) Update V r+1(xt) by taking the average over S simulation draws:

V r+1(xt) ≈
1

S

S∑
s=1

(
max
d∈D

{
v(d, xt, ε

s))

})
.

(4) Repeat Steps (2)–(3) until convergence.

The contraction property proved in Theorem 2 guarantees the uniqueness of the

value function. For our specific parameterizations of non-separable preferences, Corol-

11The identification and estimation of the discount factor β in standard time-separable models
is known to be difficult and often requires exclusion restrictions or the availability of terminating
actions. See discussions in Fang and Wang (2015), Bajari et al. (2016), Komarova et al. (2018),
Abbring and Daljord (2020), Schneider (2021).
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laries 8 and 9 provide sufficient conditions for a contraction mapping when agents have

certain preference for the temporal resolution of uncertainty under CRRA and CARA

Epstein-Zin preferences, respectively. When the boundM in Theorem 2 is difficult to

compute, we can check empirically whether the largest and the smallest fixed points

coincide with each other. Theorem 1 guarantees that we obtain the largest (smallest)

fixed point of T through the iterative procedure above if we start iterating from the

largest (smallest) possible values of V . In all of our simulation exercises and empirical

application, the fixed points are all unique.

At the point of convergence, the conditional choice probabilities Pr(dit|xit; θ) can

also be computed numerically.

p(dt|xt) ≈
1

J

J∑
j=1

1

{
dt = argmax

d∈D
v(d, xt, ε

j)

}
.

In the outer loop of the algorithm, we search for the value of θ ∈ Θ to maximize

the log-likelihood function in Equation (18), i.e., the estimator for the structural

parameter is θ̂ = maxθ∈Θ LL(θ).

Before moving on to the empirical example, we briefly discuss identification of

the model parameters. With the introduction of non-separable time preferences, our

model is much richer than the standard additively-separable model. Most impor-

tantly, the value functions in our model are non-separable in the random shocks εt.

Existing identification results for time separable models (e.g., Magnac and Thesmar,

2002; Arcidiacono and Miller, 2020) rely on the inversion from CCPs to value func-

tions given additively separable random shocks (Hotz and Miller, 1993), and thus do

not directly apply to our model.

Our empirical model imposes specific parametric assumptions on u and ϕ. These

parameters affect the agent’s risk and intertemporal preferences in non-trivial ways

so deriving generic identification results is not a straightforward exercise. All model

parameters (i.e., θ) jointly determine the conditional choice probabilities p(dt|xt) in

Equation (13). Matching the model-implied CCPs with their empirical counterparts

for various xt, we essentially characterize θ as the solution to a system of nonlinear
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equations. Given the high nonlinearity of the dynamic model, one possibility is to

at least locally identify θ given certain rank conditions (see Lewbel (2019) for more

detailed discussions and examples on local identification). Since the main purpose

of our paper is to provide a general framework of dynamic discrete choice models

that allow for non-separable time preferences, we leave a thorough investigation of

identification for future research.

5 Empirical Application: Optimal Engine Replace-

ment Revisited

We apply our model to the dataset of bus engine replacement decisions originally

studied in Rust (1987). The manager (Harold Zuercher) makes a dynamic choice for

each bus engine by trading off between an immediate lump sum cost of replacing it and

higher maintenance costs for keeping it at the beginning of each period. We extend

the Rust model to allow for non-separable time preferences, agents being risk-averse,

and earning revenues from operating the bus.

5.1 Setup

The observable state variable xt represents the accumulated mileage at the beginning

of period t. Let εt denote the unobserved payoff shocks and ∆t denote the incremental

mileage realized within period t. The agent decides whether or not to replace the

engine upon observing (xt, εt). Let dt = 1 represent the case where the engine is

replaced, and dt = 0 otherwise. The timeline of the model is shown in Figure 2.

Figure 2: Timeline of the model

period t xt

state realizes

εt

shock

dt ∈ {0, 1}

decision

∆t

mileage increases

period t+ 1
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We first specify the agent’s payoff function

π(dt, xt,∆t) =

θd∆t −RC if dt = 1

θd∆t − θxxt if dt = 0

. (19)

In Equation (19), RC represents the replacement cost and θd∆t represents the revenue

collected by the agent within a month for the incremental mileage ∆t. When the bus

engine is not replaced, the agent has to pay a maintenance cost proportional to the

accumulated mileage, i.e., θxxt. The realized consumption agent has in period t is

given by

c(dt, xt,∆t, εt) = π(dt, xt,∆t) + σεt(dt), (20)

where σ is the standard deviation of the random shock and εt(dt) is the shock that

the agent receives for alternative dt ∈ {0, 1}. Note that εt = (εt(1), εt(0)) and it

is randomly drawn from a cumulative distribution function G(·). Note that in this

empirical application, the payoff agent receives might be negative. For example, if

the agent chooses to replace the engine, he needs to pay an immediate replacement

cost. We adopt the CARA Epstein-Zin preferences described in Section 2.2.2 as it

allows for negative payoffs.

Applying the CARA parameterization to the choice-specific value function defined

in Equation (16), we have

v(dt, xt, εt) =
1

α

[
1− E∆t|dt,xt

{
(1− β) exp

(
− ρ(π(dt, xt,∆t) + σεt(dt))

)
+β

(
1− αV (xt+1)

) ρ
α
}α

ρ
]
,

where V (xt+1) is the ex-ante value function given by

V (xt+1) =

∫ (
max

{
v(0, xt+1, ε), v(1, xt+1, ε)

})
dG(ε),

and the next period accumulated mileage xt+1 is updated following:

xt+1 = (1− dt)xt +∆t.
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Intuitively, if the agent chooses to replace the engine, i.e., dt = 1, the current accumu-

lated mileage is reset to zero, so the future mileage equals to the incremental mileage

∆t. If the agent does not replace the engine, the next-period accumulated mileage

is increased by ∆t. Note that in this engine replacement example, the future state

variable xt+1 is uniquely determined once dt, xt and ∆t are realized. In other words,

there is no uncertainty with respect to xt+1 conditional on (dt, xt,∆t). We therefore

omit the expectation Ext+1|dt,xt,∆t in front of V (xt+1). The probability that an engine

is replaced conditional on the observed state xt is

p(dt = 1|xt) =
∫

1

(
v(1, xt, εt) > v(0, xt, εt)

)
dG(εt).

Based on the empirical model described above, we conduct a numerical exercise

to compare the conditional choice probabilities under separable and non-separable

preferences. In Figure 3, the red and blue curve represent the probabilities of re-

placing the engine when the agent has separable and non-separable time preferences,

respectively. Throughout the exercise, we fix the intertemporal preference parameter

ρ to be 0.5 and change the value of risk preference parameter α. Note that when

α = ρ = 0.5, the two models are equivalent, resulting in the same conditional choice

probabilities (i.e., the red and blue curves intersect at α = 0.5). When the agent

prefers late resolution of uncertainty (i.e., ρ > α), if we misspecify the agent’s pref-

erence to be time-separable and use the observed CCP to estimate the agent’s risk

preference, we would over-estimate α. Conversely, we would under-estimate α if the

agent prefers early resolution of uncertainty (i.e., ρ < α). This exercise highlights

the consequences of misspecifying the agent’s preference to be time-separable when

it is in fact not. Importantly, the direction of the bias depends on whether the agent

prefers early or late resolution of uncertainty.

5.2 Estimation Results

In the estimation, we discretize mileage into 130 intervals of length 3000 (miles) and

assume that ε’s are drawn from a standard normal distribution. To identify the
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Figure 3: Misspecifying nonseparable preferences with separable preferences: biased
estimates of the risk preference parameter α

Note: In this numerical exercise, we set RC = 3, θd = 3, θx = 0.5, σ = 2, β = 0.9, and ρ = 0.5. α
takes values from [0.2, 0.8]. For simplicity, we allow the incremental and accumulated mileages to
take 3 values: 0, 1, and 2. The state transition probabilities are specified as: Pr(∆t = 0|xt = 0) = 0,
Pr(∆t = 1|xt = 0) = 0.5, Pr(∆t = 2|xt = 0) = 0.5; Pr(∆t = 0|xt = 1) = 0.2, Pr(∆t = 1|xt =
1) = 0.6, Pr(∆t = 2|xt = 1) = 0.2; Pr(∆t = 0|xt = 2) = 0.6, Pr(∆t = 1|xt = 2) = 0.4,
Pr(∆t = 2|xt = 2) = 0.

27



scale of the unobserved random shock, we fix the RC to be 8 based on the cost

of engine replacement reported by Harold Zurcher (see Rust (1987) Table III). We

set the discount factor β = 0.9 and use 2,500 simulation draws when approximating

value functions in the iteration process. To summarize, the structural primitives to be

estimated include: parameters for risk-aversion and intertemporal preferences, α and

ρ; coefficient for revenue and maintenance cost, θd and θx; and standard deviation of

the idiosyncratic shock, σ.

In Table 1, we present the estimation results for four model specifications with

standard errors provided in the parenthesis. We first estimate a model with non-

separable time preferences, where we impose no restrictions on the values of α and

ρ. Second, we restrict that α = ρ, which leads to a model with separable time

preferences and risk aversion. Next, we consider adding revenue to the original Rust

model. Finally, for comparison purposes we also estimate the original Rust model12.

Note that in the Rust model with revenue, the choice-specific value function is

define as

v(dt, xt, εt) = E∆t|dt,xt

[
(1− β)

(
π(dt, xt,∆t) + σεt(dt)

)
+ βV (xt+1)

]
.

This is nested in the non-separable case where α = ρ → 0. The original Rust model

further removes the revenue from the payoff function π (or in other words, restricting

θd = 0), so that the choice-specific value function is reduced to:

v(dt, xt, εt) = (1− β)

(
π(dt, xt) + σεt(dt)

)
+ βE∆t|dt,xt [V (xt+1)].

From the first column of Table 1, we find that ρ > α, suggesting that the agent is

likely to prefer late resolution of uncertainty. Comparing the log-likelihood between

Columns (1) and (2), we are able to reject the hypothesis that the agent has a sepa-

rable preference at a 10% significant level (the likelihood ratio test statistic = 2.747,

p-value = 0.097). When allowing for non-separable time preferences, our estimate for

α is smaller. This is consistent with our simulation exercises: when agents prefer late

12In Rust (1987), the distribution of ε is assumed to be Type I extreme values, mainly for com-
putational convenience. We use normal distribution for the shocks ε.
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resolution of uncertainty, misspecifying the agent’s preference to be time-separable

results in an overestimate of the risk preference parameter α.

Our estimates for the payoff parameters θd and θx are also significantly different

when allowing for non-separable preferences. In particular, we underestimate the

maintenance cost parameter θx, while overestimate the revenue parameter θd under

time-separable preferences. This result highlights that misspecifying agents’ prefer-

ences can lead to biased inferences about structural primitives, and potentially mis-

leading policy recommendations. Comparing Columns (3)-(4), we find that adding

revenue to the original rust model has a minimal impact.

Table 1: Comparing estimation results for different models

(1) (2) (3) (4)
Nonseparable Separable Rust - rev Rust-orig

θd 0.0526 0.1019 0.0001
(0.0073) (0.0829) (0.0351)

θx 0.1077 0.0329 0.0208 0.0208
(0.0122) (0.0022) (0.0009) (0.0014)

σ 1.6070 1.5436 1.4883 1.4770
(0.0491) (0.0623) (0.0542) (0.0566)

α 0.1023 0.1457
(0.5087) (0.0095)

ρ 0.5555
(0.0200)

LL -299.4404 -300.8139 -301.4402 -301.6273

The parameters that capture agents’ risk and time preferences (α and ρ) are im-

portant for predicting choices under uncertainty in dynamic settings and for making

policy recommendations. To better interpret the estimated values of α and ρ, we

compute the certainty equivalent given different model specifications. In the engine

replacement model, the agent faces uncertainty about the incremental mileage in

each period, which not only affects the current-period revenue, but also affects future

maintenance costs. We compute the monetary payoff that makes the agent indifferent

when the uncertainty about incremental mileage in each period is removed. Specif-

ically, we assume that in a counterfactual scenario there is a subsidy program that

helps the agent to smooth revenue across periods. The agent receives C each period

no matter what the incremental mileage is. This is similar to the “capacity payment”
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often seen for power plants in the electricity industry and pipelines in the natural gas

industry.13

We compute the certainty equivalent using estimates from both separable and

non-separable models. We find that agents with separable preferences are willing to

accept a sure payment of $120 each month to stay indifferent. However, for agents

with non-separable time preferences, the calibrated subsidy payment is $61.6, almost

a half of what an agent with separable time preferences would require. This result is

intuitive, because when the agent prefers late resolution of uncertainty, the original

setting where there is uncertainty in revenue is less unfavorable. This exercise confirms

that misspecifying agents’ preferences as time-separable when it is in fact not can give

rise to misleading policy implications.

6 Conclusion

In this paper, we propose an empirical model of dynamic discrete choice with Epstein-

Zin preferences, generalizing the well-known bus engine replacement model studied

in Rust (1987). Based on the Bellman equation with Epstein-Zin preferences, we

prove the existence of the value function and provide conditions under which it is the

unique fixed point of a contraction mapping. We propose a simulated nested fixed

point algorithm for model estimation based on the theoretical results. Since Epstein-

Zin preferences include separable expected utility as a special case, our framework

allows us to test whether an agent has separable time preferences or not.

We apply the framework to the bus engine replacement data and show that we can

reject the null hypothesis that Harold has time-separable preferences. Based on our

estimates, the agent is likely to prefer late resolution of uncertainty. Misspecifying

the agent’s preference to be time separable when it is in fact not leads to a biased

inference of agents’ risk and intertemporal preferences as well as other key structural

parameters. This has non-trivial consequences for making policy evaluations.

13Regulators have adopted capacity payment mechanisms to encourage capacity investment and
promote system reliability. See details of capacity payment mechanisms in electricity markets in
Pfeifenberger et al. (2009).

30



The tools we develop in this paper can be easily applied to analyze many empirical

dynamic discrete choice models in industrial organization, environmental, health, and

labor economics while allowing for more general non-separable time preferences. For

example, a recent empirical literature studies the impact of uncertainty on economic

outcomes such as oil drilling, firm investment, technology adoption, and exit decisions

(see Kellogg, 2014; Dorsey, 2019; Handley and Li, 2020; Gowrisankaran et al., 2012).

In these applications, preferences for the temporal resolution of uncertainty would

naturally play an important role in firms’ dynamic responses to policy changes, such

as resolving policy uncertainty early. Allowing for more general non-separable time

preferences could lead to different welfare implications.
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A Proofs

To reduce notational burden, we drop the subscript t in the following proofs.

A.1 Proof of Theorem 1

Fix some v ≤ v∗ and v̄ ≥ v∗. We first show that for any v ∈ V , if v ≤ v̄, then

T (v) ≤ v̄. Note that

T (v) (x) ≤
∫

max
d∈D

ϕ
(
(1− β)u (π̄ + εd) + βϕ−1 (E [v̄])

)
dG (ε)

=

∫
ϕ

(
(1− β)u

(
π̄ +max

d∈D
εd

)
+ βϕ−1 (v̄)

)
dG (ε)

= E
[
ϕ
(
(1− β)u (π̄ + ε̂) + βϕ−1 (v̄)

)]
First, if ϕ is convex, then

T (v) (x) ≤ E [(1− β)ϕ (u (π̄ + ε̂)) + βv̄]

≤ (1− β)E [ϕ (u (π̄ + ε̂))] + βv̄

≤ (1− β) v∗ + βv̄ ≤ v̄

as desired. Now, if ϕ is concave, then

T (v) (x) ≤ ϕ
(
E
[
(1− β)u (π̄ + ε̂) + βϕ−1 (v̄)

])
ϕ−1 (T (v) (x)) ≤ (1− β)E [u (π̄ + ε̂)] + βϕ−1 (v̄)

≤ (1− β)ϕ−1 (v∗) + βϕ−1 (v̄)

≤ ϕ−1 (v̄)

as desired.

For the case of v ≥ v implies T (v) ≥ v̄, note that if v ≥ v, then

T (v) (x) ≥
∫

max
d∈D

ϕ
(
(1− β)u (π + εd) + βϕ−1 (E [v])

)
dG (ε)

≥ E
[
ϕ
(
(1− β)u (π + ε) + βϕ−1 (v)

)]
where the second inequality follows from the fact that εd are identically distributed.
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The rest of the proof follows symmetrically as the argument above.

Thus, T : V → V is well-defined. Let ≥ be the partial order on V where v ≥ ṽ if

v (x) ≥ ṽ (x) for all x ∈ X . Note that for any subset U ⊂ V , we can define

v∧ (x) := inf
v∈U

v (x)

which is the greatest lower bound of U . Symmetrically, we can define its least upper

bound so (V ,≥) is a complete lattice. Moreover, it is straightforward to see that T

is monotonic, that is, v ≥ ṽ implies T (v) ≥ T (ṽ). Thus, by Tarski’s fixed point

theorem, the set of fixed points of T is non-empty and also a complete lattice.

Finally, define v0 = v and vn = T (vn−1). Since v ≤ v for all v ∈ V , v0 ≤ v1 so

by induction, vn ≤ vn+1 for all n. Since vn is an increasing sequence, it converges to

some v∗. Since T is continuous, we have

v∗ = T (v∗) = lim
n
T n (v)

To see why and v∗ is the smallest fixed point, suppose there is some other fixed point

v∗∗. Since v0 ≤ v∗∗, we have

T n (v0) ≤ T n (v∗∗) = v∗∗

so taking limits, we obtain v∗ ≤ v∗∗. The case for v̄ is symmetric.

A.2 Proof of Theorem 2

Recall that

ψy (z) = ϕy

(
ϕ−1 (z)

)
so

T (v) (x) =

∫
max
d∈D

Ex,d [ψy (Ed,x,∆ [v])] dG (ε)
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where y = u (πx,d,∆ + εd) depends on the realizations of x, d,∆. We thus have

T (v) (x)− T (v̂) (x)

=

∫ (
max
d∈D

Ex,d [ψy (Ed,x,∆ [v])]−max
d∈D

Ex,d [ψy (Ed,x,∆ [v̂])]

)
dG (ε)

≤
∫

max
d∈D

Ex,d [ψy (Ed,x,∆ [v])− ψy (Ed,x,∆ [v̂])] dG (ε)

By the mean value theorem,

ψy (z1)− ψy (z2) = ψ′
y (z) (z1 − z2)

for some z strictly between z1 and z2. Thus,

T (v) (x)− T (v̂) (x)

≤
∫

max
d∈D

Ex,d

[
sup

π∈[π,π̄],z∈[v,v̄]
ψ′
u(π+εd)

(z) (Ed,x,∆ [v]− Ed,x,∆ [v̂])

]
dG (ε)

=

∫
max
d∈D

sup
π∈[π,π̄],z∈[v,v̄]

ψ′
u(π+εd)

(z)Ex,d [v − v̂] dG (ε)

≤
∫

max
d∈D

sup
π∈[π,π̄],z∈[v,v̄]

ψ′
u(π+εd)

(z) dG (ε) ∥v − v̂∥

=M ∥v − v̂∥

where

M :=

∫
max
d∈D

sup
π∈[π,π̄],z∈[v,v̄]

ψ′
u(π+εd)

(z) dG (ε)

We thus have

∥T (v)− T (v̂)∥ ≤M ∥v − v̂∥

If M < 1, then T is a contraction mapping.
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