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Abstract

An uncertainty-averse agent prefers betting on an event whose probability is known,

to betting on an event whose probability is unknown. Such an agent may randomize

his choices to eliminate the effects of uncertainty. For what sort of preferences does a

randomization eliminate the effects of uncertainty? To answer this question, we investi-

gate an agent’s preferences over sets of acts. We axiomatize a utility function, through

which we can identify the agent’s subjective belief that a randomization eliminates the

effects of uncertainty.
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1 Introduction

People often prefer to bet on a risky event (an event whose probability is known) rather than

an uncertain event (an event whose probability is unknown). Such a preference is said to be

uncertainty-averse. (See Gilboa (2009) for a formal definition of uncertainty aversion.) If you

have such a preference, one way to make a choice is to toss a coin.

For example, consider a bet on which country, A or B, will win the final match of FIFA

World Cup. If your bet turns out to be correct, you obtain $100; otherwise you obtain $0.

The problem is that you do not necessarily have a probabilistic assessment on which country

will win. Suppose that you toss a fair coin and you bet on A if heads appears; otherwise, you

bet on B. Then, no matter which country wins, you can obtain the fifty-fifty lottery between

$100 and $0.

Yet, are you really indifferent between tossing a fair coin and obtaining the fifty-fifty

lottery between $100 and $0? In other words, do you really think the coin toss eliminates the

effects of uncertainty?

This is just one example of many economic decisions under uncertainty. For what sort of

preferences does a randomization eliminate the effects of uncertainty? To answer the ques-

tion, we investigate an agent’s preferences over sets of alternatives. We axiomatize a utility

function, through which we can identify the agent’s subjective belief that his randomization

eliminates the effects of uncertainty.

In the next section, we review Ellsberg’s (1961) paradox and Raiffa’s (1961) critique.

Then, in Section 3, we preview our results.

2 Ellsberg’s (1961) Paradox and Raiffa’s (1961) Critique

To give a concrete example of choice under uncertainty, consider the following hypothetical

experiment first described by Ellsberg (1961). Suppose that you confront two urns containing

red and black balls. You have the following information. Urn I contains 100 red and black
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balls, but in a ratio entirely unknown to you; there may be from 0 to 100 red balls. In Urn

II, you know that there are exactly 50 red and 50 black balls. We call Urn I the uncertain

urn and call Urn II the risky urn, respectively.1

To “bet on a color in an urn” will mean that we draw a ball from the urn at random,

and that you will receive a payoff of 1 if the drawn ball is the color on which you bet and 0

otherwise. We ask four independent questions, each of which offers two alternatives. Which

do you prefer to bet on: (i) red or black in the uncertain urn? (ii) red or black in the risky

urn? (iii) red in the uncertain urn or in the risky urn? (iv) black in the uncertain urn or in

the risky urn?

If you are indifferent between red and black in questions (i) and (ii); and you strictly prefer

the risky urn to the uncertain urn in questions (iii) and (iv), then your preferences are said

to be uncertainty-averse. Many experimental studies have confirmed such uncertainty-averse

preferences in lab experiments.

Is it reasonable for many people to strictly prefer the risky urn to the uncertain urn?

According to Raiffa (1961), it may not be. By tossing a fair coin, you can eliminate the

effects of uncertainty; you can obtain the fifty-fifty lottery between 1 and 0 for each ball color

drawn from the uncertain urn. For example, suppose that you bet on red if heads appears

and you bet on black if tails appears. Then what you obtain is the fifty-fifty lottery between

1 and 0 for each ball color drawn from the uncertain urn. This is exactly what you obtain

by betting on a color in the risky urn. Hence, there is no reason to strictly prefer the risky

urn to the uncertain urn. This is the essence of Raiffa’s (1961) critique of uncertainty-averse

preferences.

Raiffa’s (1961) critique has been widely accepted in the field. However, we claim that there

are three important problems with his argument. The first problem is that Raiffa’s (1961)

argument presupposes that you believe that the coin toss eliminates the effects of uncertainty.

To see this, remember that Raiffa (1961) evaluates the coin toss for each ball color drawn

1Note that a red (black) ball drawn from Urn I is an uncertain event, while a red (black) ball drawn from
Urn II is a risky event.
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Figure 1: Two ways to evaluate the coin toss. The coin toss eliminates the effects of uncer-
tainty (left); does not eliminate the effects of uncertainty (right).

from the uncertain urn, as shown by the left tree of Figure 1. However, there is another,

equally natural way of evaluating the coin toss: evaluate the coin toss for each realization of

the coin toss (i.e., heads or tails), as shown by the right tree of Figure 1.

According to this latter evaluation, you have to face uncertainty again, no matter which

side of the coin appears. The coin toss therefore does not eliminate the effects of uncertainty.

Indeed, this latter view of randomization would make more sense if you think that a color of

the drawn ball is realized after you toss the coin. These two ways of evaluating the coin toss

(i.e., evaluating it for each ball color drawn from the uncertain urn or evaluating it for each

realization of the coin toss) reflect whether or not you believe that the coin toss eliminates

the effects of uncertainty. Both beliefs are legitimate, and which one is correct depends on

you.

The second problem with Raiffa’s (1961) critique concerns the size of the choice set.

Ellsberg (1961, p. 651, fn. 7) identifies this problem by saying: “Note that in no case are you

invited to choose both a color and an urn freely; nor are you given any indication beforehand

as to the full set of gambles that will be offered.” In the four questions, when you are asked

your preference between the uncertain urn and the risky urn (namely, in questions (iii) and

(iv)), your choice of a color is predetermined so that you cannot randomize between betting
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on red and betting on black.

The third problem is that Raiffa (1961) has assumed that you can commit to the result

of his randomization. To see this point, assume that you slightly prefer betting on red to

betting on black. If the coin toss determines betting on black, then you might not be able to

commit to the result of the coin toss.2

3 Preview of Results

Given the discussion above, a natural question to ask is: for what sort of preferences does a

randomization eliminate the effects of uncertainty? To study this question, we consider a set

S of states and an agent facing uncertainty about which state s ∈ S is realized. (For example,

in Ellsberg’s (1961) experiment, S consists of the possible ball color drawn from the uncertain

urn (i.e., S = {Red,Black}).)

We axiomatize the agent’s preferences over sets of payoff profiles (across the states). We

have in mind an agent facing a two-stage decision problem. The agent chooses a set in stage

1 and subsequently selects a payoff profile from that set in stage 2, maybe by randomization

(such as tossing a coin). We do not use the agent’s random choice as a primitive because it

may not be observable: he may randomize his choices in his mind without using observable

randomization devices. Consequently, we do not explicitly model a process of random choice.

Instead, we leave the agent’s random choice (and his commitment to his random choice) to

be part of the interpretation of his utility function. Therefore, the third problem of Raiffa’s

(1961) critique is moot in our model.

We axiomatize a utility function that identifies the agent’s subjective belief that his ran-

domization eliminates the effects of uncertainty. We call the utility representation a random

uncertainty-averse (RUA) representation. An RUA representation is characterized by a pair

2I am very grateful to the referee who pointed out this important issue.
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(δ, C) of δ ∈ [0, 1] and C ⊂ ∆(S). The utility of a set A of payoff profiles is

U(A) = max
ρ∈∆(A)

[

δ u
(

∑

f∈A

ρ(f)f
)

+ (1− δ)
∑

f∈A

ρ(f)u
(

f
)

]

, (1)

where u(f) = minp∈C

∑

s∈S p(s)u(f(s)), and ∆(A) is the set of probability distributions over

payoff profiles in A.

The function u captures uncertainty aversion and corresponds to the maxmin expected

utility function proposed by Gilboa and Schmeidler (1989). (In an online appendix, we gen-

eralize the representation to incorporate the variational preferences proposed by Maccheroni,

Marinacci, and Rustichini (2006).) The parameter δ ∈ [0, 1] captures the agent’s subjective

belief that his randomization ρ eliminates the effects of uncertainty. Moreover, the maximizer

ρ over ∆(A) captures the agent’s optimal random choice over A.

To understand these interpretations of δ and ρ, note that in the objective function, the

first term, u(
∑

f∈F
ρ(f)f), is the utility when the randomization ρ eliminates the effects of

uncertainty because
∑

f∈F
ρ(f)f denotes a state-wise mixture of payoff profiles with respect

to ρ. For example, in the first term, Raiffa’s (1961) coin toss is evaluated as the constant

payoff profile 1
2
(1, 0) + 1

2
(0, 1) ≡ (1

2
, 1
2
), where the payoff profiles (1, 0) and (0, 1) correspond

to betting on red and black, respectively, in the uncertain urn.

On the other hand, the second term,
∑

f∈F
ρ(f)u(f), is the utility when the randomization

ρ does not eliminate the effects of uncertainty. In this case, the agent evaluates each payoff

profile separately and then calculates the expected value with respect to ρ. For example, in

the second term, the utility of the coin toss is the expected utility of 1
2
u(1, 0) + 1

2
u(0, 1).

Therefore, the parameter δ captures the agent’s subjective belief that his randomiza-

tion ρ eliminates the effects of uncertainty. In this way, we address the first problem with

Raiffa’s (1961) critique, namely that Raiffa (1961) presupposes that the agent believes that

his randomization eliminates the effects of uncertainty. (In other words, Raiffa (1961) pre-

supposes δ = 1.) In our model, the weighted sum of the two terms, δu(
∑

f∈F
ρ(f)f) + (1 −

δ)
∑

f∈F
ρ(f)u(f), is the agent’s expected utility obtained by his randomization ρ. Therefore,
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the maximizer ρ over ∆(A) captures the agent’s optimal random choice over A. Note that

we obtain the optimal random choice endogenously, in the sense that our primitive does not

include a choice of randomization.

We apply our result to Ellsberg’s (1961) experiment to address the second problem with

Raiffa’s (1961) critique, namely that whether an agent can randomize his choices or not

depends on how large his choice set is. We consider an agent whose preferences admit RUA

representation and who faces the two urns in Section 2. Then, we study how the size of the

agent’s choice set affects his observable attitude toward uncertainty. We show that the agent’s

uncertainty premium depends on who determines the ball color drawn from the uncertain urn

on which he bets. The uncertain premium is lower when the agent determines it than when the

experimenter predetermines it. Moreover, we also show that when the agent determines the

ball color, his uncertainty premium decreases as δ increases. In fact, the agent’s uncertainty

premium becomes zero when δ = 1, even when he is uncertainty-averse. See Section 6.

We present comparative statics on δ. We show that both a preference for randomization

and a preference for flexibility (i.e., preference for a larger set) are captured in a natural way

by δ. See Section 5. All proofs are in Section 7.

Finally, let us now discuss the related literature. Our paper is related to papers on

subjective state space, such as the work of Dekel, Lipman, and Rustichini (2001) and Epstein,

Marinacci, and Seo (2007). Epstein et al. (2007) point out that an agent can eliminate the

effects of uncertainty by randomizing his choice; they then axiomatize two models that are

similar to the two special cases of RUA representations with δ = 1 and δ = 0. Our paper,

however, is different from both papers in its motivations and primitives. The main purpose

of Dekel et al. (2001) and Epstein et al. (2007) is to obtain a state space endogenously, a

space which has often been assumed as a primitive (e.g., in Savage (1954) and Anscombe and

Aumann (1963) as well as in our paper). Consequently, the primitive preferences of Dekel et

al. (2001) and Epstein et al. (2007) are defined on sets of payoffs (i.e., lotteries), while our

primitive preferences are defined on sets of payoff profiles across the state space.

Our paper is also related to recent axiomatic literature on random choice, such as Bat-
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tigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2013), Gul and Pesendorfer (2006), and

Manzini and Mariotti (2012). Their primitives and motivations are also different from ours.

They all use random choice functions as primitives. Moreover, only Battigalli et al. (2013)

study uncertainty-averse agents. The main purpose of Battigalli et al. (2013), however, is

different from ours in that they present a new framework for studying random choice under

uncertainty, while maintaining the mathematical convenience of Anscombe and Aumann’s

(1963) framework.

In Saito (2013), we have also studied a preference for randomization. There, we focus on

other-regarding behaviors in a social context, such as when two agents toss a coin to decide

who gets an indivisible good. In contrast to this paper, the primitive preferences in that

paper are defined on randomizations over payoff profiles (across the agents). This difference

in primitives arises from the fact that randomizations would be observable in a social context.

For example, the two agents would use observable randomization devices to decide who gets

the indivisible good. Because of the difference in primitives, our proof here is completely

different from the proof in Saito (2013).

There is recent research on a preference for randomization under uncertainty, in which

primitive preferences are defined on randomizations over payoff profiles (across the state

space). Eichberger, Grant, and Kelsey (2014) show that a dynamically consistent agent has no

preference for randomization. Kuzmics (2013) shows that if an agent can randomize his choice

in his mind, he can commit to his randomization, and if he believes that his randomization

eliminates the effects of uncertainty, then he behaves as if uncertainty-neutral.

4 Axioms

We denote the set of payoffs (i.e., von Neumann-Morgenstern utilities) by U . We assume that

U is a nonempty, compact, and convex subset of real numbers.3 We also assume that U is not

3With a set Z of outcomes, we can use the standard domain ∆(Z) instead of U without any major changes
in results.
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a singleton.4 We denote the set of real numbers by R and the set of nonnegative real numbers

by R+. Let S = {1, . . . , n} be the set of states. A payoff profile f = (f(1), ..., f(n)) ∈ U S

is called an act. We denote the set U S of acts by F . Let A be the set of all nonempty

compact subsets of F . A probability distribution ρ over acts with finite support is called a

randomization. For any set A ∈ A , we denote by ∆(A) the set of randomizations over acts

in A.

The primitive of our model is a binary relation % on A , which describes the agent’s choice

of sets.5 Note that this domain of % does not include randomizations (i.e., ∆(F ) 6⊂ A ). In

this sense, we do not assume that the agent’s choices over randomizations are observable.

An act f is called a constant act if f(s) = f(s′) for all s, s′ ∈ S. For an act f , a payoff

x ∈ U is called the certainty equivalent of f , if f ∼ (x, . . . , x). We denote the certainty

equivalent of f by x(f).

Payoffs are denoted by x, y ∈ U . Sets of acts are denoted by A,B ∈ A . Acts are denoted

by f , g, h ∈ F . Randomizations are denoted by ρ, µ ∈ ∆(F ). If ρ is a randomization

that yields act f i with probability ρi ∈ [0, 1] for each i ∈ {1, . . . , m}, then we write ρ =

ρ1f
1 ⊕ · · · ⊕ ρmf

m.

We define state-wise mixtures of acts and sets as follows:

Definition 1: For all α ∈ [0, 1] and f, g ∈ F , αf + (1 − α)g is an act such that (αf + (1−

α)g)(s) = αf(s) + (1− α)g(s) ∈ U for each s ∈ S.

For any f 1, . . . , fn ∈ F and any α1, . . . , αn ∈ [0, 1] such that
∑n

i=1 αi = 1, we denote

α1f
1 + · · ·+ αnf

n by
∑n

i=1 αif
i. In the following, by mixing acts, we mean making a state-

wise mixture among the acts. Note that the state-wise mixture of acts is not a (nondegenerate)

randomization.

Definition 2: For all α ∈ [0, 1], A,B ∈ A , αA+(1−α)B = {αf+(1−α)g|f ∈ A and g ∈ B}.

The first five axioms are based on the axioms in Gilboa and Schmeidler (1989).

4I am very grateful to the referee who suggested this assumption.
5As usual, ≻ and ∼ denote the asymmetric and symmetric parts of %, respectively.
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Axiom (Weak Order): % is complete and transitive.

Axiom (Continuity): For any f, g ∈ F and A ∈ A , if {f} ≻ A ≻ {g} then α{f}+(1−α)A ≻

A ≻ β{g}+ (1− β)A for some α and β in (0, 1).

Axiom (Monotonicity): For any f, g ∈ F , if f(s) ≥ g(s) for all s ∈ S then {f} % {g}.

Moreover, if f(s) > g(s) for all s ∈ S then {f} ≻ {g}.

Since U is neither empty nor singleton, there exist x, y ∈ U such that x > y. Hence, the

monotonicity axiom implies that (x, . . . , x) ≻ (y, . . . , y). So, ≻ is nondegenerate.

The next axiom captures the agent’s uncertainty aversion. To motivate the axiom, consider

the two urns in Section 2. Hence, the state space consists of the possible ball color drawn

from the uncertain urn (i.e., S = {Red,Black}). The acts fRed ≡ (1, 0) and fBlack ≡ (0, 1)

correspond to betting on red and black, respectively, in the uncertain urn. The act (1
2
, 1
2
)

corresponds to betting on a color in the risky urn; this is because by doing so, the agent can

obtain the expected payoff of 1
2
independent of a realization of a state. The uncertainty-averse

agent prefers (1
2
, 1
2
) ≡ 1

2
fRed + 1

2
fBlack to fRed and fBlack, if he is indifferent between fRed and

fBlack. Thus, such uncertainty-averse agent would prefer to mix two equally desirable acts,

because mixing nonconstant acts can make the mixed payoff profile smoother.

Axiom (Uncertainty Aversion): For any f, g ∈ F , if {f} ∼ {g} then {1
2
f + 1

2
g} % {f}.

On the other hand, mixing an act with a constant act might not make the mixed payoff

profile smoother. Hence, such a mixture does not reverse the agent’s preference between two

sets. This observation motivates the following axiom, which is a natural extension of Gilboa

and Schmeidler’s (1989) certainty independence axiom.6

Axiom (Certainty Set Independence): For any x ∈ U and A,B ∈ A ,

A % B ⇔ αA+ (1− α){(x, ..., x)} % αB + (1− α){(x, ..., x)}.

6Gilboa and Schmeidler’s (1989) certainty independence axiom is as follows: f % g ⇔ αf+(1−α)(x, ..., x) %
αg + (1− α)(x, ..., x).
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The next two axioms are new. The first of these, certainty strategic rationality, is signif-

icantly weaker than Kreps’s (1979) strategic rationality axiom. Kreps (1979) requires that

if A % B, then A ∼ A ∪ B. The uncertainty-averse agent could violate this axiom. Even

if the agent has the option to choose from a set A and he prefers A to another set B, he

might have a strict preference for the additional option to choose from B so that he could

randomize acts in A as well as acts in B. However, when A consists of a constant act (i.e.,

A = {(x, . . . , x)}), the agent might not have the strict preference for the additional option

because a randomization with the constant act would not make the payoff profile smoother.

This suggests the following weaker axiom.

Axiom (Certainty Strategic Rationality):

{(x, ..., x)} % {f, g} ⇒ {(x, ..., x)} ∼ {(x, ..., x), f, g}.

The last axiom is related to Dekel et al.’s (2001) indifference to randomization axiom.

A natural extension of their axiom to our domain is: A ∼ co(A), where co(A) denotes the

convex hull with respect to the state-wise mixtures (i.e., co(A) = {
∑n

i=1 αif
i|f 1, . . . , fn ∈

F and α1, . . . , αn ∈ [0, 1] such that
∑n

i=1 αi = 1}).7

Whether the agent satisfies this indifference to randomization axiom depends on whether

he believes that his randomization eliminates the effects of uncertainty. To see this, consider

the two urns in Section 2 again. Remember that the acts fRed ≡ (1, 0) and fBlack ≡ (0, 1)

correspond to betting on red and black, respectively, in the uncertain urn; and that the act

(1
2
, 1
2
) corresponds to betting on a color in the risky urn.

Suppose that the agent can determine the ball color drawn from the uncertain urn on

which he bets; then his choice set is {fRed, fBlack}. Note that co({fRed, fBlack}) ≡ {(p, 1 −

p)|p ∈ [0, 1]}, and the convex hull contains the act (1
2
, 1
2
). Therefore, the uncertainty-averse

agent would strictly prefer co({fRed, fBlack}) to {fRed, fBlack} in order to choose (1
2
, 1
2
), unless

7Dekel et al. (2001, p. 904) have proposed this axiom for preferences over sets of lotteries but not for
preferences over sets of acts.
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he believes what Raiffa (1961) claims, namely that his coin toss eliminates the effects of

uncertainty.

We propose a new axiom, dominance, which the agent can satisfy independent of his

belief. The dominance axiom states that the agent should prefer a set A to another set

B, if A provides better randomization than B, regardless of whether he believes that his

randomization eliminates the effects of uncertainty.

red

black tails:1
2

heads:1
2

x(0, 1)

x(1, 0)

1
2
1 + 1

2
0

1
2
1 + 1

2
0

1
2
(1, 0) + 1

2
(0, 1)

Figure 2: Value of randomization 1
2
(1, 0) ⊕ 1

2
(0, 1) when it does and does not eliminate the

effects of uncertainty. (x(f) denotes the certainty equivalent of act f .)

To define the dominance axiom, we formalize two ways to evaluate a randomization de-

pending on the agent’s belief about the randomization. To illustrate the two ways, consider

the two urns in Section 2 again and note that the coin toss is described as 1
2
fRed ⊕ 1

2
fBlack ≡

1
2
(1, 0)⊕ 1

2
(0, 1). If the agent believes—as Raiffa (1961) claims—that the coin toss eliminates

the effects of uncertainty, then he would evaluate the randomization as the state-wise mixture

1
2
(1, 0) + 1

2
(0, 1) ≡ (1

2
, 1
2
).

On the other hand, if the agent thinks that the coin toss does not eliminate the effects of

uncertainty, then he should be indifferent to reducing each act (namely (1, 0) and (0, 1)) to its

certainty equivalent (namely x(1, 0) and x(0, 1)). Because mixtures among constant acts do

not affect uncertainty. Hence, the value of the coin toss should be equal to the expected value

1
2
x(1, 0)+ 1

2
x(0, 1) of the certainty equivalents.8 These observations suggest the following two

ways to compare randomizations that depend on the agent’s belief:

Definition 3: For all ρ, µ ∈ ∆(F ) such that ρ = ρ1f
1 ⊕ · · · ⊕ ρmf

m, µ = µ1g
1 ⊕ · · · ⊕ µkg

k,

ρ dominates µ if

8Note that under the first three axioms, there exists a unique certainty equivalent x(f) for any act f ∈ F .
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(i) x(ρ1f
1 + · · ·+ ρmf

m) ≥ x(µ1g
1 + · · ·+ µkg

k); and

(ii) ρ1x(f
1) + · · ·+ ρmx(f

m) ≥ µ1x(g
1) + · · ·+ µkx(g

k).

Definition 3 (i) captures the comparison of randomizations ρ and µ when the agent believes

that the randomizations eliminate the effects of uncertainty. Definition 3 (ii) captures the

comparison when the agent believes that the randomizations do not eliminate those effects.

Hence, if ρ dominates µ, then the agent should prefer ρ to µ independent of his belief about

his randomizations.

Axiom (Dominance): If for all µ ∈ ∆(B), there exists ρ ∈ ∆(A) such that ρ dominates µ,

then A % B.

To summarize, the dominance axiom means that the agent should prefer a set A to another

set B, if for any randomization µ over B, there exists a better randomization ρ over A,

regardless of whether he believes that his randomizations eliminate the effects of uncertainty.

Theorem 1: % satisfies Weak Order, Continuity, Monotonicity, Uncertainty Aversion, Cer-

tainty Set Independence, Certainty Strategic Rationality, and Dominance if and only if there

exists a pair (δ, C) of δ ∈ [0, 1] and C ⊂ ∆(S) such that % is represented by a function

U : A → R defined by

U(A) = max
ρ∈∆(A)

[

δ u
(

∑

f∈F

ρ(f)f
)

+ (1− δ)
∑

f∈F

ρ(f)u
(

f
)

]

, (2)

where u(f) = minp∈C

∑

s∈S p(s)f(s) and C is compact and convex.9

We call % an RUA preference relation if % satisfies all the axioms in Theorem 1. In the on-

line appendix, we present an axiomatization of an extended representation which incorporates

the variational preferences proposed by Maccheroni, Marinacci, and Rustichini (2006).

For an RUA preference relation, both parameters δ and C are unique whenever the agent

is not an expected utility maximizer.

9Remember that values of acts are utils. Hence, for all x ∈ U , U({(x, . . . , x)}) = u(x, . . . , x) = x.
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Remark 1: Suppose that two RUA representations with (δ, C) and (δ′, C ′) represent the same

%. Then (i) C = C ′, and (ii) if C is not a singleton, then δ = δ′.

In this remark, (i) means that C is uniquely pinned down for the agent. (ii) means that δ

is also uniquely pinned down when the agent is not an expected utility maximizer. When the

agent is an expected utility maximizer (i.e., when C = {p}), then the first term and the second

term become equal (i.e., u(
∑

f∈F
ρ(f)f) =

∑

s∈S p(s)
∑

f∈F
ρ(f)f(s) =

∑

f∈F
ρ(f)u(f)).

Therefore, δ becomes irrelevant to the agent’s utility. In this sense, the nonuniqueness of δ in

the case of an expected utility maximizer is unavoidable but not significant.

5 Characterizations of δ

In this section, we study how the key parameter δ describes the agent’s preferences. First, we

discuss the implication of the two special cases of the RUA representations in which δ = 1

and δ = 0. After that, we present comparative statics on δ.

The two special cases in which δ = 1 and δ = 0 imply that the agent believes that his

randomization can eliminate the effects of uncertainty completely and that his randomization

cannot eliminate those effects at all, respectively. Both implications seem rather extreme.

This would suggest that most people would exhibit the generic case in which δ ∈ (0, 1).

Indeed, the next proposition shows that the two special cases are characterized by rather

strong axioms, namely the indifference to randomization axiom (i.e., A ∼ co(A)) and the

strategic rationality axiom (i.e., A % B ⇒ A ∼ A ∪ B), respectively.

Proposition 1: Suppose that % is represented by an RUA representation with (δ, C).

(i) % satisfies the indifference to randomization axiom if and only if δ = 1.

(ii) % satisfies the strategic rationality axiom if and only if δ = 0.

In what follows, we present comparative statics on δ. We show that both a preference for

flexibility (i.e., a preference for a larger choice set) and a preference for randomization are

captured by δ. We say that agent 1 has a stronger preference for flexibility than agent 2 if
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agent 1 prefers a set of acts to an act in the set whenever agent 2 also prefers that set to that

act. Formally,

Definition 4: %1 is said to exhibit a stronger preference for flexibility than %2 if, for every

A ∈ A and f ∈ A,

A %2 {f} ⇒ A %1 {f}.

Next, we formalize a comparative attitude across agents toward randomization. Consider

an agent whose preference relation % admits RUA representation with (δ, C). Then, we define

w(ρ) to be the agent’s expected utility of randomization ρ when ρ eliminates the effects of

uncertainty with probability δ. Formally, for any ρ ∈ ∆(F ), define w(ρ) = δu(
∑

f∈F
ρ(f)f)+

(1− δ)
∑

f∈F
ρ(f)u(f), where u(f) = minp∈C

∑

s∈S p(s)f(s).

Definition 5: For an RUA preference relation %, we denote by ∆%(A) the set of maximizers

of w(·) over ∆(A) (i.e., ∆%(A) ≡ argmaxρ∈∆(A)w(ρ)).

Note that Theorem 1 shows that maxρ∈∆(A)w(ρ) represents %. Hence, Theorem 1 guaran-

tees that ∆%(A) is nonempty.10 Note also that (∆%(A)) \A 6= ∅ means that a nondegenerate

randomization is optimal. In other words, the agent has an incentive to randomize his choice.

We say that agent 1 has a stronger preference for randomization than agent 2 if agent 1 has

an incentive to randomize his choice whenever agent 2 has such an incentive. Formally,

Definition 6: For any RUA preference relations %1 and %2, %1 is said to exhibit a stronger

preference for randomization than %2 if for any A ∈ A ,

(∆%2
(A)) \ A 6= ∅ ⇒ (∆%1

(A)) \ A 6= ∅.

Proposition 2: Suppose %i is represented by an RUA representation with (δi, Ci) for each

i ∈ {1, 2} and C1 = C2, where C1 is not a singleton. Then, the following conditions are

10We can directly prove that ∆%(A) 6= ∅, as follows. Since S is finite and A is compact, ∆(A) is compact.
∑

f∈F
ρ(f)u(f) is continuous in ρ. By Berge’s maximum theorem, u(

∑

f∈F
ρ(f)f) is also continuous in ρ

(see footnote 14 for the detailed argument). Hence, w(ρ) is continuous in ρ. Therefore, Weierstrass’s theorem
shows that ∆%(A) ≡ argmaxρ∈∆(A)w(ρ) 6= ∅.
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equivalent:

(i) %1 exhibits a stronger preference for flexibility than %2;

(ii) δ1 ≥ δ2; and

(iii) %1 exhibits a stronger preference for randomization than %2.

The result shows that in RUA preference relations, a stronger preference for randomization

is equivalent to a stronger preference for flexibility. Moreover, both comparative attitudes are

captured by a larger δ.

6 Application

In this section, we apply our result to Ellsberg’s (1961) experiment: we consider an agent

whose preference relation admits RUA representation. Then, we study how the size of the

agent’s choice set affects his observable attitude toward uncertainty, namely his uncertainty

premium.

Remember that an agent’s uncertainty premium is the premium for betting on the ball

color drawn from the risky urn—a premium whose magnitude is such as to make him indif-

ferent between (i) betting on the ball color drawn from the risky urn and (ii) betting on the

ball color drawn from the uncertain urn. Remember also that the two acts fRed ≡ (1, 0) and

fBlack ≡ (0, 1) correspond to betting on red and black, respectively, in the uncertain urn. The

act (1
2
, 1
2
) corresponds to betting on a color in the risky urn.

Our framework allows us to define the agent’s uncertainty premiums depending on who

determines the ball color drawn from the uncertain urn on which the agent bets. When the

agent determines it, the uncertainty premium rRedBlack is defined as follows:
{(

1
2
−rRedBlack, 1

2
−

rRedBlack
)}

∼ {fRed, fBlack}. Note that, in the left set, the agent can obtain 1
2
by paying the

premium rRedBlack; in the right set, the agent can choose a color freely to bet on.

On the other hand, when the experimenter predetermines the color (e.g., red) on which the

agent bets, the uncertainty premium rRed is defined as follows:
{(

1
2
−rRed, 1

2
−rRed

)}

∼ {fRed}.

We define rBlack in the same way (i.e.,
{(

1
2
− rBlack, 1

2
− rBlack

)}

∼ {fBlack}).
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Proposition 3: Suppose that {fRed} ∼ {fBlack}, and C is not a singleton. Then, min{rRed, rBlack}

> rRedBlack if and only if δ > 0.

This proposition shows that a smaller choice set increases the agent’s uncertainty premium

as long as δ > 0. In other words, the agent behaves as if he were more uncertainty-averse

when his choice set is smaller.

In fact, in many experimental studies, an agent is allowed to determine the ball color

drawn from the uncertain urn on which he bets. In accordance with this convention, we also

use rRedBlack as the agent’s uncertainty premium, rather than rRed or rBlack. Consequently,

we say that the agent is observationally uncertainty-averse if rRedBlack > 0 and that he is

observationally uncertainty-neutral if rRedBlack = 0. We can calculate rRedBlack explicitly as

follows:

Proposition 4: Suppose that {fRed} ∼ {fBlack}. Then,

rRedBlack =
(1− δ)|C|

2
,

where |C| = maxp∈C p(Red )−minp∈C p(Red ). Hence, the agent is observationally uncertainty-

averse if and only if δ < 1 and |C| > 0.

This proposition means that the agent’s uncertainty premium is determined not only by his

set C of priors but also by his subjective belief (i.e., δ) that his randomization eliminates the

effects of uncertainty. The uncertainty premium is decreasing in δ. Indeed, even if the agent

does not have a unique prior (i.e., |C| > 0), he can be observationally uncertainty-neutral

(i.e., rRedBlack = 0) when δ = 1.

Given Proposition 4, we can characterize the comparative attitudes across agents. We

say that %1 is observationally more uncertainty-averse than %2 if rRedBlack
1 ≥ rRedBlack

2 , where

rRedBlack
i is the uncertainty premium for each agent i ∈ {1, 2}.

Corollary 1: Suppose that %i is represented by an RUA representation with (δi, Ci) and

{fRed} ∼i {f
Black} for each i ∈ {1, 2}. Then, %1 is observationally more uncertainty-averse
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than %2 if and only if (1− δ1)|C1| ≥ (1− δ2)|C2|.

This proposition implies that even when agent 1 has a smaller set of priors than agent

2 (i.e., C1 ⊂ C2), agent 1 could be observationally more uncertainty-averse than agent 2 if

δ1 < δ2.

7 Proofs

First, we present the sketch for the proof of Theorem 1. Then, we show the proofs of Theorem

1 and Remark 1. Finally, we present the proofs of Propositions 1–4.

7.1 Sketch of Proof

In this section, we sketch the proof of sufficiency in Theorem 1. The main difficulty in the

proof arises from the fact that we do not assume the indifference to randomization axiom:

A ∼ co(A). This axiom has been used by many authors such as Dekel et al. (2001) and

Epstein et al. (2007).11 Since we do not assume this axiom, we cannot focus on convex sets

without loss of generality. We overcome this difficulty by investigating sets in a utility space.

It turns out that, in the utility space, we can focus on convex sets without loss of generality

because of the quasi-concavity of uncertainty-averse preferences.

The outline of the sketch is as follows. First, we focus on sets that contain two indifferent

acts (i.e., {f, g} such that f ∼ g). Then, we explain how to obtain the desired representation

on these particular domain. Finally, we explain how to extend the desired representation into

the whole domain.

By a standard argument, there exists a utility function U : A → R such that U has Gilboa

and Schmeidler’s (1989) maxmin expected utility representation on F . Consider {f, g} such

11Dekel et al. (2001) and Epstein et al. (2007) impose the indifference to randomization axiom on preferences
over sets of lotteries. Epstein et al. (2007) propose two representations. For one representation, they impose
the indifference to randomization axiom. For the other representation, they do not impose the axiom. Instead,
they use richer primitives, that is preferences over (the second stage) lotteries over sets of (the first stage)
lotteries. They then assume the independence axiom with respect to the second stage lotteries.
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that f ∼ g. Define

δ({f, g}) =
U({f, g})− U(f)

maxα∈[0,1] U(αf + (1− α)g)− U(f)
. (3)

By Certainty Set Independence, it can be shown that δ does not depend on f and g. (See

Lemma 6 for the proof.) So, we can define δ = δ({f, g}). By rewriting (3), we obtain

U({f, g}) = maxα∈[0,1] δU(αf +(1−α)g)+ (1− δ)U(f) = maxα∈[0,1] δU(αf +(1−α)g)+ (1−

δ)(αU(f) + (1− α)U(g)). The last equality holds because U(f) = U(g). Define

L =
{

{f, g}
∣

∣f ∼ g and αf + (1− α)g ≻ f for some α ∈ [0, 1]
}

. (4)

Note that δ is well defined on L and that we have obtained the desired representation on L .

A∗

(v1(ρ), v2(ρ))

45◦
v1(ρ)

v2(ρ)

(v2(ρ), v2(ρ))

Figure 3: Set A∗

Next, we obtain the representation on an arbitrary set A ∈ A . For this aim, we consider

the set that consists of the utilities of randomizations on A.12 For any randomization ρ, we

define v1(ρ) as the utility of ρ when ρ eliminates the effects of uncertainty; and v2(ρ) as the

utility of ρ when ρ does not eliminate those effects. Formally, v1(ρ) = U(
∑

f∈F
ρ(f)f); and

v2(ρ) =
∑

f∈F
ρ(f)U(f). For any set A ∈ A , define

A∗ = {(v1, v2) ∈ R
2|v2 = v2(ρ) and v2(ρ) ≤ v1 ≤ v1(ρ) for some ρ ∈ ∆(A)}. (5)

12For technical simplicity, A∗ consists not only of the utilities of randomizations on A but also of the
dominated utilities.
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By Dominance, we can show that if A∗ = B∗, then U(A) = U(B). Therefore, without loss

of generality, we can focus on this alternative domain A ∗. (See Lemma 7 for a formal proof.)

This alternative domain has useful properties. It can be shown that A∗ = co({(v1(ρ), v2(ρ)) ∈

R
2|ρ ∈ ∆(A)}) because of the concavity of U on F . Moreover, Jensen’s inequality implies

that v1 ≥ v2 for all (v1, v2) ∈ A∗. Hence, A∗ is a convex set, as described in Figure 3.

In particular, if A ∈ L (i.e., A = {f, g} for some f, g ∈ F such that f ∼ g), then A∗ be-

comes a line segment spanned by (U(f), U(f)) and (maxα∈[0,1] U(αf+(1−α)g), U(f)). Hence,

the parameter δ can be described as the slope of the line connecting (U({f, g}), U({f, g})) and

(maxα∈[0,1] U(αf+(1−α)g), U(f)), as shown in Figure 4. Remember that we have already ob-

tained the desired representation on L : for anyA ∈ L , U(A) = maxρ∈∆(A) δU(
∑

f∈F
ρ(f)f)+

(1− δ)
∑

f∈F
ρ(f)U(f) = max v∈A∗ δv1 + (1− δ)v2.

(maxα∈[0,1] U(αf + (1− α)g), U(f))(U(f), U(f))
{f, g}∗

(U({f, g}), U({f, g}))

δ

45◦

Figure 4: Set {f, g} ∈ L and δ

Finally, we extend the representation to an arbitrary A ∈ A . For all (v1, v2) ∈ R
2, define

V (v1, v2) = δv1 + (1 − δ)v2. Let U∗ be the maximum of V on A∗ and v
∗ be its maximizer

on A∗. Let B,C ∈ L such that B∗ and C∗ are the two line segments respectively described

in Figure 5.13 Note that B∗ is the line segment spanned by (v∗2 , v
∗
2) and v

∗. We denote

by w and w the two points that span the line segment C∗. Moreover, the slope of the line

connecting v
∗ and (U∗, U∗), and the slope of the line connecting w and (U∗, U∗) are the

same, namely δ. Therefore, by the representation on L , U(B) = max v∈B∗ V (v1, v2) = U∗ =

max v∈C∗ V (v1, v2) = U(C).

13Existence of such sets will be proved in Lemma 9.
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v
∗

D∗
A∗

(U∗, U∗)

δ

B∗
(v∗2, v

∗
2)

C∗

45◦

ww

δ

Figure 5: Sets A∗, B∗, C∗, and D∗

DefineD = C∪{(U∗, . . . , U∗)}. Since U(U∗, . . . , U∗) = U∗, Certainty Strategic Rationality

shows that U(D) = U∗. Moreover, D∗ = co(C∗∪{(U∗, U∗)}), which is the triangle containing

A∗ described in Figure 5. Since B∗ ⊂ A∗ ⊂ D∗, we can show U(B) ≤ U(A) ≤ U(D) by

using Dominance. Since U(B) = U∗ = U(D), we obtain U(A) = U∗ ≡ max v∈A∗ V (v1, v2) =

maxρ∈∆(A) δU(
∑

f∈F
ρ(f)f) + (1 − δ)

∑

f∈F
ρ(f)U(f), where the last equality holds by the

definition of v . (See Lemma 9 for a formal proof.)

7.2 Proof of Sufficiency in Theorem 1

In this section, we present the proof of sufficiency in Theorem 1. The proof consists of nine

lemmas. First, we present the outline of the proof with the statements of the lemmas. After

that, we present the proofs of the lemmas. We put the proofs of several lemmas in the online

appendix.

We introduce the following notation. We denote a singleton set {f} by f . We denote

constant acts (x, ..., x) and (y, ..., y) by x and y when there is no danger of confusion. For

example, we denote αf + (1− α)(x, . . . , x) and αA+ (1− α)(x, . . . , x) by αf + (1− α)x and

αA+ (1− α)x, respectively.

Note that Certainty Set Independence implies Gilboa and Schmeidler’s (1989) axiom:

f % g ⇔ αf + (1 − α)x % αg + (1 − α)x for all f, g ∈ F , x ∈ U , and α ∈ (0, 1). Hence,

Gilboa and Schmeidler’s (1989) theorem shows the next lemma. The proof is in the online
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appendix.

Lemma 1 There exists a nonempty, compact, and convex subset C of ∆(S) such that % on

F is represented by u(f) = minp∈C

∑

s∈S p(s)f(s).

By Dominance and Continuity, for any A ∈ A , we can find f ∈ F such that {f} ∼ A.

Define U(A) = u(f). So by Lemma 1, we can prove Lemma 2. The formal proof is in the

online appendix.

Lemma 2 There exists a function U : A → U such that (i) U(A) ≥ U(B) ⇔ A % B and

(ii) U(f) = minp∈C

∑

s∈S p(s)f(s) for all f ∈ F .

By Dominance and the concavity of U on F , we obtain the next lemma.

Lemma 3 (i) For all ρ ∈ ∆(F ), U(
∑

f∈F
ρ(f)f) ≥

∑

f∈F
ρ(f)U(f); and

(ii) maxρ∈∆(A) U(
∑

f∈F
ρ(f)f) ≥ U(A) ≥ maxρ∈∆(A)

∑

f∈F
ρ(f)U(f).

In the next lemma, by using Lemma 3 (ii), we can establish Theorem 1 when U has an

expected utility representation on F .

Lemma 4 Suppose that U has an expected utility representation on F . Then, for any δ ∈

[0, 1] and A ∈ A , U(A) = maxρ∈∆(A) δU(
∑

f∈F
ρ(f)f) + (1− δ)

∑

f∈F
ρ(f)U(f).

In the following, we assume that U does not have an expected utility representation on

F . Then, by a standard argument, there exist f ∗, g∗ ∈ F such that 1
2
f ∗ + 1

2
g∗ ≻ f ∗ ∼ g∗.

(We, henceforth, fix these f ∗ and g∗.) Define L by (4) in the sketch of proof. Note that

{f ∗, g∗} ∈ L .

For all {f, g} ∈ L , define δ({f, g}) by (3) in the sketch of proof. By the definition,

maxα∈[0,1] U(αf + (1 − α)g) > U(f), so the denominator of δ({f, g}) is positive. Therefore,

δ({f, g}) is well defined. Moreover, by Lemma 3 (ii), maxα∈[0,1] U(αf+(1−α)g) ≥ U({f, g}) ≥

U(f), so that δ({f, g}) ∈ [0, 1].
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Since U is a maxmin expected utility function on F , U is constant linear (i.e., for any

f ∈ F , x ∈ U , and α ∈ [0, 1], we have U(αf + (1 − α)x) = αU(f) + (1 − α)x). Mainly by

using this property and Certainty Set Independence, we can prove the next lemma.

Lemma 5 For all A ∈ A , α ∈ [0, 1], and x ∈ U , U(αA+ (1− α)x) = αU(A) + (1− α)x.

In the next lemma, we obtain the desired representation on L .

Lemma 6 There exists δ ∈ [0, 1] such that U({f, g}) = maxρ∈∆({f,g}) δU(
∑

f∈F
ρ(f)f)+(1−

δ)
∑

f∈F
ρ(f)U(f) for all {f, g} ∈ L .

In the following, we extend the representation to the whole domain A . For this purpose,

for any ρ ∈ ∆(F ), define v1(ρ) = U(
∑

f∈F
ρ(f)f), v2(ρ) =

∑

f∈F
ρ(f)U(f), and v (ρ) =

(v1(ρ), v2(ρ)). For any A ∈ A , define A∗ by (5) in the sketch of proof. Note that since ∆(A)

is compact and v is continuous in ∆(A), A∗ is compact.14

We say that A∗ dominates B∗ if for all v ∈ B∗ there exists u ∈ A∗ such that u1 ≥ v1 and

u2 ≥ v2. We show two preliminary lemmas before obtaining the desired representation on A .

Lemma 7 (i) If A∗ dominates B∗, then U(A) ≥ U(B); (ii) If A∗ ⊃ B∗ then U(A) ≥ U(B);

(iii) For all ρ ∈ ∆(F ), v1(ρ) ≥ v2(ρ); and (iv) max v∈A∗ v1 ≥ U(A) ≥ max v∈A∗ v2.

Note that Lemma 7 (ii) shows that if A∗ = B∗, then U(A) = U(B).

Remember that we fixed f ∗, g∗ ∈ F such that 1
2
f ∗ + 1

2
g∗ ≻ f ∗ ∼ g∗. Let α∗ ∈

argmaxα∈[0,1] U(αf ∗+(1−α)g∗). For simplicity, assume U(f ∗) = 0 and U(α∗f ∗+(1−α∗)g∗) =

1 without loss of generality.15 For all β ∈ [0, 1], define f [β] = βf ∗ + (1 − β)x(f ∗) and

14 Since S is finite and A is compact, ∆(A) is compact. To see v is continuous, define up(f) =
∑

s∈S p(s)f(s)
for all p ∈ C; and define ûp(µ) =

∑

f∈F
µ(f)up(f) for all µ ∈ ∆(A) and p ∈ C. Note that with the Euclidean

metric, up(f) is continuous with respect to f . Moreover, up(f) is bounded in ∆(A). Therefore, with the
weak convergence topology, by definition ûp(µ) is continuous with respect to µ in ∆(A). Finally, since C

is compact under the product topology, Berge’s maximum theorem shows that v1(µ) ≡ minp∈C ûp(µ) is
continuous with respect to µ in ∆(A). In the same way, we can show v2(µ) is continuous in ∆(A). Therefore,
v (µ) = (v1(µ), v2(µ)) is continuous with respect to µ in ∆(A).

15This assumption is only for notational simplicity. Without this assumption, the proof goes through in the
same way. However, we need to write U(f [β]) and U(α∗f [β] + (1− α∗)g[β]), instead of 0 and β, respectively.
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g[β] = βg∗ + (1 − β)x(g∗). (We use the notation f [β] instead of f(β) to avoid confusion

because f(s) ∈ R for each s ∈ S.)

Lemma 8 (i) For any β ∈ (0, 1], {f [β], g[β]}∗ = co({(0, 0), (β, 0)}) and U({f [β], g[β]}) =

δβ; (ii) For any β ∈ (0, 1] and x ∈ U , {f [β], g[β], (x, . . . , x)}∗ = co({(0, 0), (β, 0), (x, x)}).

By using Lemma 7 and 8, we establish the desired representation on A in the next lemma.

Lemma 9 For all A ∈ A , U(A) = maxρ∈∆(A) δU(
∑

f∈F
ρ(f)f) + (1− δ)

∑

f∈F
ρ(f)U(f).

In the following, we provide the proofs of main lemmas. We omit the proofs of Lemmas 1

and 2. The proofs are standard and in the online appendix.

Proof of Lemma 3: For any ρ ∈ ∆(F ), U(
∑

f∈F
ρ(f)f) ≥

∑

f∈F
ρ(f)U(f), where the

inequality holds by Jensen’s inequality. Hence, (i) holds. To show (ii), fix A ∈ A . Let

f ∈ argmaxf∈co(A) U(f) and f ∈ argmaxf∈A U(f). Hence, by (i), for any ρ ∈ ∆(A),

U(f) ≥ U(
∑

f∈F
ρ(f)f) ≥

∑

f∈F
ρ(f)U(f) ≥ U(f ). Therefore, {(U(f), U(f))} dominates A

and A dominates {(U(f), U(f))}. Therefore, by Dominance, U(f ) ≥ U(A) ≥ U(f).

Proof of Lemma 4: Suppose that U has an expected utility representation on F . Then,

there exists p ∈ ∆(S) such that for any f ∈ F , U(f) =
∑

s∈S f(s)p(s). Then U(
∑

f∈F
ρ(f)f) =

∑

f∈F
ρ(f)U(f). By Lemma 3 (ii),

U(A) = max
ρ∈∆(A)

U(
∑

f∈F

ρ(f)f) = max
ρ∈∆(A)

∑

f∈F

ρ(f)U(f).

Proof of Lemma 5: Fix A ∈ A . By using Dominance, we can find f ∈ F such that A ∼ f .

Fix α ∈ [0, 1] and x ∈ U . Hence, by Certainty Set Independence, αA+(1−α)x ∼ αf +(1−

α)x. Therefore, U(αA+(1−α)x) = U(αf+(1−α)x) = αU(f)+(1−α)x = αU(A)+(1−α)x,

where the second equality holds by constant linearity.
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Proof of Lemma 6: Choose any {f, g}, {f ′, g′} ∈ L to show δ({f, g}) = δ({f ′, g′}). Let

α∗ ∈ argmaxα∈[0,1] U(αf + (1− α)g) and β∗ ∈ argmaxβ∈[0,1] U(βf ′ + (1− β)g′).

Case 1: First, consider the case where U(f) = U(f ′). Define x = U(f). Without loss of

generality assume that U(β∗f ′+(1−β∗)g′) ≤ U(α∗f+(1−α∗)g). Define γ = U(β∗f ′+(1−β∗)g′)−x

U(α∗f+(1−α∗)g)−x
.

Then, γ ∈ [0, 1]. Define f̂ = γf + (1− γ)x and ĝ = γg + (1− γ)x.

Step 1: δ({f̂ , ĝ}) = δ({f, g}).

Proof of Step 1: By Lemma 5, U({f̂ , ĝ}) = γU({f, g}) + (1 − γ)x. By the constant

linearity of U , α∗ ∈ argmaxα∈[0,1] U(αf̂ + (1 − α)ĝ).16 Moreover, U(α∗f̂ + (1 − α∗)ĝ) =

γU(α∗f + (1− α∗)g) + (1− γ)x and U(f̂ ) = γU(f) + (1− γ)x. It follows that

δ({f̂ , ĝ}) =
U({f̂ , ĝ})− U(f̂)

U(α∗f̂ + (1− α∗)ĝ)− U(f̂)
=

γ(U({f, g})− U(f))

γ(U(α∗f + (1− α∗)g)− U(f))
= δ({f, g}).

Step 2: δ({f ′, g′}) = δ({f̂ , ĝ}).

Proof of Step 2: First, we show {f ′, g′} ∼ {f̂ , ĝ} by using Dominance. By the definition of

γ and the constant linearity of U , U(α∗f̂ + (1 − α∗)ĝ) = γU(α∗f + (1 − α∗)g) + (1 − γ)x =

U(β∗f ′ + (1− β∗)g′). By the constant linearity of U , U(f̂) = γU(f) + (1− γ)x = U(f ′).

Now choose any ρ ∈ ∆({f̂ , ĝ}) to show that β∗f ′ ⊕ (1 − β∗)g′ dominates ρ. Note that

U(β∗f ′+(1−β∗)g′) = U(α∗f̂ +(1−α∗)ĝ) ≥ U(ρ(f̂)f̂ +ρ(ĝ)ĝ) and β∗U(f ′)+(1−β∗)U(g′) =

U(f ′) = U(f̂) = ρ(f̂)U(f̂) + ρ(ĝ)U(ĝ). Hence, Dominance shows {f ′, g′} % {f̂ , ĝ}. In

the same way, we can obtain {f̂ , ĝ} % {f ′, g′}. It follows that {f ′, g′} ∼ {f̂ , ĝ}, so that

U({f ′, g′}) = U({f̂ , ĝ}). Therefore,

δ({f ′, g′}) =
U({f ′, g′})− U(f ′)

U(α∗f ′ + (1− α∗)g′)− U(f ′)
=

U({f̂ , ĝ})− U(f̂)

U(β∗f̂ + (1− β∗)ĝ)− U(f̂ )
= δ({f̂ , ĝ}).

By Step 1 and 2, we obtain δ({f, g}) = δ({f ′, g′}).

Case 2: Next consider the case where U(f) 6= U(f ′). Without loss of generality assume

16For all α, β ∈ [0, 1], x ∈ U , U(α(βf +(1−β)x)+ (1−α)(βg+(1−β)x)) = βU(αf +(1−α)g)+ (1−β)x.
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that U(f) > U(f ′). There exists x ∈ U such that U(f) > x > U(f ′). Then, there exist

γ, γ′ ∈ (0, 1) such that γU(f) + (1 − γ)x = γ′U(f ′) + (1 − γ′)x. Then by Case 1, δ({γf +

(1 − γ)x, γg + (1 − γ)x}) = δ({γ′f ′ + (1 − γ′)x, γ′g′ + (1 − γ′)x}). As in Step 1 of Case 1,

we can show that δ({f, g}) = δ({γf + (1− γ)x, γg + (1− γ)x}). In the same way, we obtain

δ({f ′, g′}) = δ({γ′f ′ + (1− γ′)x, γ′g′ + (1− γ′)x}). Hence, δ({f, g}) = δ({f ′, g′}).

By the arguments in Case 1 and 2, we can define δ = δ({f, g}) for any {f, g} ∈ L . Finally,

to show the representation, choose any {f, g} ∈ L . By the definition of δ,

δ =
U({f, g})− U(f)

U(α∗f + (1− α∗)g)− U(f)
.

By rewriting the equation, we obtain U({f, g}) = δU(α∗f + (1 − α∗)g) + (1 − δ)U(f). Note

that U(α∗f + (1 − α∗)g) = maxρ∈∆({f,g}) U(
∑

h∈F
ρ(h)h) and that U(f) =

∑

h∈F
ρ(h)U(h)

for any ρ ∈ ∆({f, g}). It follows that U({f, g}) = maxρ∈∆({f,g}) δU(
∑

h∈F
ρ(h)h) + (1 −

δ)
∑

h∈F
ρ(h)U(h).

Proof of Lemma 7: To show (i), fix A∗ and B∗ such that A∗ dominates B∗. Then, for any

ρ ∈ ∆(B), there exists µ ∈ ∆(A) such that v1(ρ) ≤ v1(µ) and v2(ρ) ≤ v2(µ). Therefore, by

Dominance, A % B, so that U(A) ≥ U(B). Moreover, if A∗ ⊃ B∗, then A∗ dominates B∗, so

that U(A) ≥ U(B). Hence, (i) and (ii) hold. Lemma 3 and the definitions of v1 and v2 show

(iii) and (iv).

Proof of Lemma 8: By the definitions, for all β ∈ (0, 1], U(f [β]) = 0 = U(g[β]) and

maxα∈[0,1] U(αf [β]+(1−α)g[β]) = maxα∈[0,1] βU(αf ∗+(1−α)g∗)+(1−β)U(f ∗) = βU(α∗f ∗+

(1 − α∗)g∗) = β. Note that {f [β], g[β]} ∈ L . By Lemma 6, U({f [β], g[β]}) = δU(α∗f [β] +

(1− α∗)g[β]) + (1− δ)(α∗U(f [β]) + (1− α∗)U(g[β])) = δβ.

It is easy to see that {f [β], g[β]}∗ ⊂ co({(0, 0), (β, 0)}). To show the converse, choose

v
′ ∈ co({(0, 0), (β, 0)}). Then, U(g[β]) = 0 ≤ v′1 ≤ β = U(α∗f [β] + (1− α∗)g[β]) and v′2 = 0.

Since U(αf [β] + (1 − α)g[β]) is continuous in α, by the intermediate value theorem, there

26



exists α ∈ [0, α∗] such that U(αf [β] + (1 − α)g[β]) = v′1 and αU(f [β]) + (1 − α)U(g[β]) =

v′2, so that v
′ = v (αf [β] ⊕ (1 − α)g[β]). Therefore, v

′ ∈ {f [β], g[β]}∗. It follows that

co({(0, 0), (β, 0)}) ⊂ {f [β], g[β]}∗. This completes the proof of (i).

To show (ii), choose any β ∈ (0, 1] and x ∈ U . It is easy to see that {f [β], g[β], (x, . . . , x)}∗ ⊂

co({(0, 0), (β, 0), (x, x)}). To show the converse, choose any v
′ ∈ co({(0, 0), (β, 0), (x, x)}). If

v
′ ∈ co({(0, 0), (β, 0)}), then by the argument in (i), v ′ ∈ {f [β], g[β]}∗ ⊂ {f [β], g[β], (x, . . . , x)}∗.

If v
′ 6∈ co({(0, 0), (β, 0)}), then there exists v

′′ ∈ co({(0, 0), (β, 0)}) and γ ∈ [0, 1] such

that v
′ = γ v ′′ + (1 − γ)(x, x). By the argument in (i), there exists α ∈ [0, 1] such that

v (αf [β] ⊕ (1 − α)g[β]) = v
′′. By the constant linearity of u, we obtain v (γαf [β] ⊕ γ(1 −

α)g[β]⊕(1−γ)(x, . . . , x)) = γ v (αf [β]⊕(1−α)g[β])+(1−γ)(x, x) = γ v ′′+(1−γ)(x, x) = v
′.

Therefore, v
′ ∈ {f [β], g[β], (x, . . . , x)}∗.

Proof of Lemma 9: Choose any A ∈ A .

Case 1: First we consider the case in which δ = 0. For all α ∈ (0, 1), define Aα = αA +

(1 − α)(1
2
, . . . , 1

2
). By Lemma 7 (iii), for all u ∈ A∗, u1 ≥ u2. Moreover, since A∗ is

bounded, there exists a positive number α such that A∗
α ⊂ co({(0, 0), (1, 0), (1, 1)}). Let v

∗ =

argmax v∈A∗

α
v2. (Such v

∗ exists because v2 is continuous and A∗
α is compact.) Since A∗

α ⊂

co({(0, 0), (1, 0), (1, 1)}), it follows that v∗2 < 1. Define B = v∗2(1, . . . , 1)+ (1− v∗2){f [1], g[1]}.

By Lemma 5, U(B) = v∗2+(1−v∗2)U({f [1], g[1]}). By Lemma 8 (i) and δ = 0, U({f [1], g[1]}) =

0. Hence, U(B) = v∗2. By Lemma 7 (iv), U(B) = v∗2 ≡ max v∈A∗

α
v2 ≤ U(Aα).

B∗

A∗
α

v
∗ (1, v∗2)

Figure 6: Sets A∗
α and B∗ in Case 1

Next we show that U(B) ≥ U(Aα). For all v ∈ A∗
α, v1 ≤ 1 and v2 ≤ v∗2 because
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A∗
α ⊂ co({(0, 0), (1, 0), (1, 1)}) and v∗2 = max v∈A∗

α
v2. Note that B∗ = v∗2(1, 1) + (1 −

v∗2)co({(0, 0), (1, 0)}) = co({ v ∗, (1, v∗2)}). Therefore, B∗ dominates A∗
α as shown in Figure

6. Hence, by Lemma 7 (i), U(B) ≥ U(Aα).

It follows that U(Aα) = U(B) = max v∈A∗

α
v2 = αmax v∈A∗ v2 + (1 − α)1

2
. By Lemma 5,

U(Aα) = αU(A) + (1−α)1
2
. Hence, we obtain αmax v∈A∗ v2 + (1−α)1

2
= αU(A) + (1−α)1

2
.

Therefore, U(A) = max v∈A∗ v2 = maxρ∈∆(A)

∑

f∈F
ρ(f)U(f).

Case 2: Next we consider the case in which δ > 0. Choose a positive number ε such that

ε < δ. For all α ∈ (0, 1), define Aα = αA + (1 − α)(ε, ε). Then, max v∈A∗

α
δv1 + (1 − δ)v2 =

α(max v∈A∗ δv1 + (1 − δ)v2) + (1 − α)ε. Since (i) A∗ is bounded, (ii) ε < δ, and (iii) v1 ≥ v2

for all v ∈ A∗, there exists a positive number α such that A∗
α ⊂ co({(0, 0), (1, 0), (1, 1)}) and

max v∈A∗

α
δv1+(1− δ)v2 < δ. Note that U(Aα) = α∗U(A)+(1−α∗)ε and max v∈A∗

α
δv1+(1−

δ)v2 = α∗(max v∈A∗ δv1+(1− δ)v2)+ (1−α∗)ε. Hence to show the lemma, it suffices to prove

U(Aα) = max v∈A∗

α
δv1 + (1 − δ)v2. Define U∗ = max v∈A∗

α
δv1 + (1 − δ)v2. Then, U

∗ < δ. In

the following, we show that U(Aα) ≥ U∗ and U(Aα) ≤ U∗.

Step 1: U(Aα) ≥ U∗.

Proof of Step 1: Let v
∗ ∈ argmax v∈A∗

α
δv1+(1−δ)v2. (Such v

∗ exists because δv1+(1−δ)v2

is continuous and A∗
α is compact.) By Lemma 7 (iii), v∗1 ≥ v∗2. Define B =

v∗
2

v∗
1

(v∗1, . . . , v
∗
1) +

(1 −
v∗
2

v∗
1

){f [v∗1], g[v
∗
1]}. By Lemma 5, U(B) =

v∗
2

v∗
1

v∗1 + (1 −
v∗
2

v∗
1

)U({f [v∗1], g[v
∗
1]}). By Lemma

8 (i), U({f [v∗1 ], g[v
∗
1]}) = δv∗1. Therefore, U(B) = v∗2 + (v∗1 − v∗2)δ = δv∗1 + (1 − δ)v∗2 = U∗.

Moreover, B∗ =
v∗
2

v∗
1

(v∗1, v
∗
1) + (1 −

v∗
2

v∗
1

)co({(0, 0), (v∗1, 0)}) = co({(v∗2, v
∗
2), v

∗}). Since v
∗ ∈ A∗

α

and v∗1 ≥ v∗2, we obtain A∗
α ⊃ B∗. Hence, Lemma 7 (ii) shows U(Aα) ≥ U(B). It follows that

U(Aα) ≥ U∗.

Step 2: U(Aα) ≤ U∗.

Proof of Step 2: Remember that U∗ < δ. Define D = {f [U
∗

δ
], g[U

∗

δ
], (U∗, . . . , U∗)}. Then, by

Lemma 8 (ii), D∗ = co(
{

(0, 0), (U
∗

δ
, 0), (U∗, U∗)

}

). By the definitions of U∗ and v
∗, we obtain

A∗
α ⊂ D∗ (as shown in Figure 7). Therefore, Lemma 7 (ii) shows U(Aα) ≤ U(D). Hence, to

show U(Aα) ≤ U∗, it suffices to show U∗ = U(D). Since δ > U∗, then U∗

δ
< 1. Define C =

28



v
∗

D∗
A∗

α

(U∗, U∗)

(0, 0) (U
∗

δ
, 0)δ

B∗
(v∗2, v

∗
2)

C∗

δ

Figure 7: Sets A∗
α, B

∗, C∗, and D∗ in Case 2

{f [U
∗

δ
], g[U

∗

δ
]}. By Lemma 8 (i), U(C) = U∗. It follows that (U∗, . . . , U∗) ∼ {f [U

∗

δ
], g[U

∗

δ
]}.

By Certainty Strategic Rationality, (U∗, . . . , U∗) ∼ {f [U
∗

δ
], g[U

∗

δ
], (U∗, . . . , U∗)} ≡ D. Hence,

U∗ = U(D).

7.3 Proof of Necessity in Theorem 1

We show that an RUA representation satisfies the two key axioms, Certainty Strategic

Rationality and Dominance. An RUA representation trivially satisfies the other axioms.

For all ρ ∈ ∆(F ), define w(ρ) = δu(
∑

f∈F
ρ(f)f) + (1 − δ)

∑

f∈F
ρ(f)u(f). Note that

U(A) = maxρ∈∆(A) w(ρ).

To show that % satisfies Certainty Strategic Rationality, assume (x, ..., x) % B. Then,

u(x, ..., x) ≥ U(B) = maxρ∈∆(B) w(ρ). Hence, u(x, . . . , x) ≥ w(ρ) for all ρ ∈ ∆(B). Note that

w(αρ ⊕ (1 − α)x) = αw(ρ) + (1 − α)w(x, ..., x) for all ρ ∈ ∆(B) and α ∈ [0, 1]. Therefore,

u(x, ..., x) ≥ w(µ) for all µ ∈ ∆((x, ..., x) ∪B). Hence, u(x, ..., x) ≥ maxµ∈∆((x,...,x)∪B)w(µ) ≡

U((x, ..., x) ∪B), so that (x, ..., x) % (x, ..., x) ∪ B.

To show that % satisfies Dominance, fix A,B ∈ A and suppose that for any µ ∈ ∆(B),

there exists ρ ∈ ∆(A) such that ρ dominates µ. That is, u(
∑

f∈F
ρ(f)f) ≥ u(

∑

f∈F
µ(f)f)

and
∑

f∈F
ρ(f)u(f) ≥

∑

f∈F
µ(f)u(f). Since δ ∈ [0, 1], then w(ρ) ≡ δu(

∑

f∈F
ρ(f)f) +

(1 − δ)
∑

f∈F
ρ(f)u(f) ≥ δu(

∑

f∈F
µ(f)f) + (1 − δ)

∑

f∈F
µ(f)u(f) ≡ w(µ). Therefore,

U(A) ≡ maxρ∈∆(A)w(ρ) ≥ maxµ∈∆(B) w(µ) ≡ U(B), so that A % B.
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7.4 Proof of Remark 1 (Uniqueness)

It is easy to see that (ii) implies (i). In the following, we show the converse. The uniqueness of

C (i.e., C = C ′) follows from Gilboa and Schmeidler (1989). Let u and u′ be maxmin expected

utilities defined with C and C ′ respectively. Then, by normalization that u(x, . . . , x) = x =

u′(x, . . . , x), we obtain u = u′.

Suppose that C is not a singleton. Then, there exist f ∗, g∗ ∈ F such that 1
2
f ∗ + 1

2
g∗ ≻

f ∗. Let α∗ ∈ argmaxα∈[0,1] U(αf ∗ + (1 − α)g∗). Define x = δu(α∗f ∗ + (1 − α∗)g∗) + (1 −

δ)u(f ∗). Then, U({f ∗, g∗}) = x, so that {f ∗, g∗} ∼ (x, ..., x). Hence, x = u′(x, ..., x) =

δ′u′(α∗f ∗ + (1 − α∗)g∗) + (1 − δ′)u′(f ∗). Since u = u′, we obtain δ = x−u(f∗)
u(α∗f∗+(1−α∗)g∗)−u(f∗)

=

x−u′(f∗)
u′(α∗f∗+(1−α∗)g∗)−u′(f∗)

= δ′.

7.5 Proofs of Propositions 1–4

First, we present a reminder for a basic fact: When C is not a singleton, there exist f ∗, g∗ ∈ F

and α∗ ∈ [0, 1] such that α∗f ∗ + (1 − α∗)g∗ % αf ∗ + (1 − α)g∗ for all α ∈ [0, 1] and

α∗f ∗ + (1− α∗)g∗ ≻ f ∗ ∼ g∗. Hence, U({f ∗, g∗}) = δu(α∗f ∗ + (1− α∗)g∗) + (1− δ)u(f ∗).

Proof of Proposition 1: First, we show (i). It is easy to see that if δ = 1 then % exhibits

Indifference to Randomization. To show the converse, let A = {f ∗, g∗}. By Indifference to

Randomization, A ∼ co(A). Therefore, δu(α∗f ∗ + (1 − α∗)g∗) + (1 − δ)u(f ∗) = U(A) =

U(co(A)) = maxh∈co(A) u(h) = u(α∗f ∗ + (1 − α∗)g∗), so that δ = 1. Next, we show (ii). It is

easy to see that if δ = 0, then % exhibits Strategic Rationality. To show the converse, note

that by Strategic Rationality, A ∼ {f ∗}. Therefore, δu(α∗f ∗ + (1 − α∗)g∗) + (1 − δ)u(f ∗) =

U(A) = U({f ∗}) = u(f ∗), so that δ = 0.

Proof of Proposition 2: Fix two RUA preference relations {%i}i=1,2 represented by {(δi, Ci)}i=1,2,

where C1 = C2.

Step 1: (i) ⇔ (ii).
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Proof of Step 1: First, we show that (i) implies (ii). Suppose that %1 exhibits a stronger

preference for flexibility than %2. Define u(f) = minp∈C

∑

s∈S p(s)f(s). In the following, we

show δ1 ≥ δ2. Let U1 and U2 be the RUA representations with (δ1, u) and (δ2, u), respec-

tively. Define x = δ2u(α
∗f ∗ + (1 − α∗)g∗) + (1 − δ2)u(f

∗). Since U2({f
∗, g∗, (x, ..., x)}) =

δ2u(α
∗f ∗ + (1 − α∗)g∗) + (1 − δ2)u(f

∗) = x, then {f ∗, g∗, (x, ..., x)} ∼2 (x, ..., x). Since %1

exhibits a stronger preference for flexibility than %2, then {f ∗, g∗, (x, ..., x)} %1 (x, ..., x).

Hence, U1({f
∗, g∗, (x, ..., x)}) = δ1u(α

∗f ∗ + (1 − α∗)g∗) + (1 − δ1)u(f
∗) ≥ x. Therefore,

δ1 ≥
x−u(f∗)

u(α∗f∗+(1−α∗)g∗)−u(f∗)
= δ2.

Second, we show that (ii) implies (i). Suppose that δ1 ≥ δ2 and C1 = C2. Define

u(f) = minp∈C1

∑

s∈S p(s)f(s). Fix any A ∈ A and g ∈ A such that A %2 g to show A %1 g.

Then, for any ρ ∈ ∆%2
(A),

U1(A) ≥ δ1u(
∑

f∈F
ρ(f)f) + (1− δ1)

∑

f∈F
ρ(f)u(f)

≥ δ2u(
∑

f∈F
ρ(f)f) + (1− δ2)

∑

f∈F
ρ(f)u(f) (∵ δ1 ≥ δ2)

= U2(A) (∵ ρ ∈ ∆%2
(A))

≥ u(g). (∵ A %2 g)

Step 2: (ii) ⇔ (iii).

Proof of Step 2: Note that by definition, for all i ∈ {1, 2}, ∆%i
(A) = argmaxρ∈∆(A)wi(ρ).

First, we show that (ii) implies (iii). Suppose that δ1 ≥ δ2. Choose A ∈ A such that

(∆%2
(A)) \ A 6= ∅. Choose any ρ∗ ∈ (∆%2

(A)) \ A. Then, w2(ρ
∗) ≥ w2(f) for any f ∈ A.

Therefore,

w1(ρ
∗) = δ1u(

∑

f∈F
ρ∗(f)f) + (1− δ1)

∑

f∈F
ρ∗(f)u(f)

≥ δ2u(
∑

f∈F
ρ∗(f)f) + (1− δ2)

∑

f∈F
ρ∗(f)u(f) (∵ δ1 ≥ δ2)

= w2(ρ
∗).

So, we obtain w1(ρ
∗) ≥ w2(ρ

∗). Since w2(ρ
∗) ≥ w2(f) and w2(f) = u(f) = w1(f) for any

f ∈ A, it follows that w1(ρ
∗) ≥ w1(f) for any f ∈ A. Hence, if there exists f ∈ A such that
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f ∈ ∆%1
(A), then ρ∗ ∈ (∆%1

(A))\A 6= ∅. If there exists no f ∈ A such that f ∈ ∆%1
(A), then

(∆%1
(A))\A = ∆%1

(A) 6= ∅. (Remember that ∆%1
(A) 6= ∅.) In either case, (∆%1

(A))\A 6= ∅.

Second, we show that (iii) implies (ii). Suppose that %1 exhibits a stronger preference

for randomization than %2. We show δ1 ≥ δ2. Define x = w2(α
∗f ∗ ⊕ (1 − α∗)g∗) and

A = {f ∗, g∗, (x, . . . , x)}. Then, α∗f ∗⊕(1−α∗)g∗ ∈ (∆%2
(A))\A 6= ∅. By way of contradiction

suppose that δ1 < δ2, then

x = w2(α
∗f ∗ ⊕ (1− α∗)g∗)

= δ2u(α
∗f ∗ + (1− α∗)g∗) + (1− δ2)u(f

∗)

> δ1u(α
∗f ∗ + (1− α∗)g∗) + (1− δ1)u(f

∗) (∵ δ2 > δ1)

= w1(α
∗f ∗ ⊕ (1− α∗)g∗).

By the constant linearity of u, ∆%1
(A) ≡ argmaxρ∈∆(A) w(ρ) = {(x, . . . , x)}, so that ∆%1

(A)\

A = ∅. This contradicts that %1 exhibits a stronger preference for randomization than %2.

Proof of Propositions 3 and 4: First, we show Proposition 4. If u(fRed) = u(fBlack),

then minp∈C p(Red) = minp∈C p(Black). Hence, U({fRed, fBlack}) = maxα∈[0,1]w(αf
Red⊕ (1−

α)fBlack) = w(1
2
fRed ⊕ 1

2
fBlack) = δ 1

2
+ (1− δ)(1

2
minp∈C p(Red) + 1

2
minp∈C p(Black)) = 1

2
(1−

(1−δ)|C|), where the last equality holds because minp∈C p(Black) = 1−maxp∈C p(Red). Since

1
2
− rRedBlack = U({fRed, fBlack}), by the definition of rRedBlack, then rRedBlack = 1

2
(1− δ)|C|.

Next we show Proposition 3. Note that since minp∈C p(Red) = minp∈C p(Black), we obtain

maxp∈C p(Red) = 1 − minp∈C p(Black) = 1 − minp∈C p(Red). Therefore, by the definition of

|C|, we obtain 1
2
(1− δ)|C| = 1

2
(1− δ)(1− 2minp∈C p(Red)) = (1− δ)(1

2
−minp∈C p(Red)).

By the definition of rRed, 1
2
− rRed = u(fRed). Since u(fRed) = minp∈C p(Red), we ob-

tain rRed = 1
2
− minp∈C p(Red). Since u(fRed) = u(fBlack), then rRed = rBlack. Hence,

min{rRed, rBlack} > rRedBlack if and only if 1
2
−minp∈C p(Red) > (1− δ)(1

2
−minp∈C p(Red)) if

and only if δ > 0.
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