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This online appendix consists of five sections. In Section 1, we illustrate the use of

SARSEU through a few simple theoretical exercises. In each case, the exercise is to

present a well-known alternative to risk-averse SEU, and to show that data generated

by these theories can violate SARSEU. In Section 2, we show that, in the 2 × 2 case,

SARSEU is equivalent to Requirements (5) and (6) in the paper. In Section 3, we provide

the details of the example of risk-averse probability sophisticated preferences that violate

SARSEU. In Section 4, we present the relationship between SARSEU and results obtained

in the revealed preference literature on objective expected utility, where the probability

over states is assumed to be observable and given as a primitive. The point is that the

axiom to characterize objective expected utility has a similar syntax to SARSEU, and that

the differences between the two are instructive. In Section 5, we study the relationship

between SARSEU and the axiomatization in Savage (1954). It is useful to see the role of

SARSDU and SARSEU in ruling our violations of Savage’s axioms.

1 Applications of SARSEU

We discuss, in turn, non-concave SEU and state-dependent utility. By showing that

these models can generate datasets which violate SARSEU, we show that the models

are in fact testable beyond risk-averse SEU. In other words, that non-concave SEU and

state-dependent utility all have testable implications over and beyond those of risk-averse

SEU. This point has been made by Bayer et al. (2012) for non-concave SEU and maxmin

expected utility; but they use Afriat inequalities to this end, and here we seek to illustrate

the use of SARSEU.

1.1 Non-concave SEU

The concavity of u plays an important role in our characterization. This should not

be surprising, as risk aversion has obvious economic meaning and content. There are,

however, instances in revealed preference theory where concavity has no implications

for a rational consumer. Afriat’s theorem (Afriat (1967)) shows that concavity is not a

testable property of a utility function. For the SEU model, concavity of u is equivalent

to the convexity of preferences over state-contingent bundles. So it is legitimate to ask

about the testability of the concavity of u. In this section we show that indeed concavity

is testable.
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In the following, we will show an example of dataset generated from a non-concave

SEU model that violates SARSEU.

Consider the following dataset:

pk1 = (1, 2), xk1 = (1, 2) and pk2 = (1.1, 2), xk2 = (10, 1).

Note that

xk1s2 > xk2s2 and xk2s1 > xk1s1 ,

while
pk1s2
pk2s2

pk2s1
xk1s1

=
2

2

1.1

1
= 1.1 > 1,

so SARSEU is violated, and the dataset is not rationalizable by any concave utility and

priors.

It is, however, rationalizable by the following non-concave SEU. Let µ =
(1

3
,
2

3

)
.

Define

v(x) =


1 if x ≤ 9,

2 if 9 < x ≤ 10,

1 if x > 10.

Remember that B(p, I) = {x : R2
+ : pk · x ≤ pk · xk} for all p ∈ RS

++ and I ∈ R++.

Let u(x) =
∫ x
0
v(s)ds.

It is clear that x1 is optimal for
∑
µsu(xs) in B(p1, p1 · x1), as v(xs1) = v(xs2) = 1 for

all (xs1 , xs2) ∈ B(p1, p1 · x1).
By the monotonicity of u, any maximum of

∑
µsu(xs) in B(p2, p2 ·x2) must lie on the

budget line pk2s1xs1 + pk2s2xs2 = 13. Note that, on the budget line,

xs2 =
13− 1.1xs1

2
,

so xs2 ≤ 13
2
< 9 for xs1 ≥ 0. For all xs1 ≥ 0, define f(xs1) = µ1u(xs1) + µ2u(xs2) =

1
3

[
u(xs1) + 2u(

13−1.1xs1
2

)
]
. Then, f ′(xs1) = 1

3
[v(xs1)− 1.1] for xs1 ∈ [0, 13/1.1], as v(

13−1.1xs1
2

) =

1. Thus,

f ′(xs1) =


−0.1
3

if xs1 ≤ 9,

0.9
3

if 9 < xs1 ≤ 10,

−0.1
3

if 10 < xs1 .

So f(xs1) has two local maxima, xs1 = 0 and xs1 = 10. By a direct calculation, f(0) =
13
6

= 2 + 1
6

and f(10) = 1
3
(9 + 2) + 2

3
(13−1.1×10

2
) = 3 + 4

3
. Since f(10) > f(0), it is indeed

optimal to choose x2 in B(p2, p2 · x2).
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1.2 State-dependent Utility

State-dependent utility is the model in which an agent seeks to maximize
∑

s∈S us(xs);

where us is a utility function over money for each state s. By means of Afriat inequalities,

Varian (1983a) has proposed a characterization of additive linear model, which includes

state-dependent utility model as a special case.

On the other hand, we have proposed a combinatorial axiom (i.e., SARSDU) for

concave state-dependent utility, which is beyond Afriat inequalities. The axiom is weaker

than SARSEU. Hence, the two models should be distinguishable. In the following, we

propose an example of dataset that is consistent with SARSDU but not with SARSEU.

Assume S = {s1, s2}. Consider the following dataset:

pk1 = (3, 2), pk2 = (1, 1) and xk1 = (2, 1), xk2 = (3, 4).

Choose strictly concave functions us1 and us2 such that

u′s1(2) = 3 > 1 = u′s1(3) and u′s2(1) = 2 > 1 = u′s2(4).

Then
u′s1(2)

u′s2(1)
=
pks1
pks2

,
u′s1(3)

u′s2(4)
=
pk2s1
pk2s2

,

so that the first-order conditions are satisfied.

The sequence {(xk1s1 , x
k1
s2

), (xk2s2 , x
k2
s1

)} satisfies the condition of SARSEU. However,

pk1s1
pk1s2

pk2s2
pk2s1

=
3

2
> 1.

This is a violation of SARSEU. Note also that this dataset violates Requirement (6).

2 Proof of Remark 1

In the paper, in Remark 1, we claimed that the following two requirements are equivalent

to SARSEU in the 2× 2 case. Here we prove this statement.

Requirements:

xk1s1 > xk2s1 and xk2s2 > xk1s2 ⇒
pk1s1
pk2s1

pk2s2
pk1s2
≤ 1. (5)

xk1s1 > xk1s2 and xk2s2 > xk2s1 ⇒
pk1s1
pk1s2

pk2s2
pk2s1
≤ 1. (6)
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Remark: In the 2×2 case, a dataset satisfies SARSEU if and only if it satisfies Require-

ment 5 and 6.

Proof. It is easy to see that SARSEU implies the two requirements. To prove the recip-

rocal, we need a preliminary concept.

We say that a set σ ≡ {(xkisi , x
k′i
s′i

)}ni=1 of pairs that satisfies the three conditions in

SARSEU is minimal if there exist no subset (σi)
m
i=1 of pairs such that (i) σi satisfies the

three conditions in SARSEU for each i = 1, . . . ,m and (ii) σ = ∪ni=1σi.

Step 1: If a set {(xkisi , x
k′i
s′i

)}ni=1 of pairs is minimal and satisfies the three conditions, then

it must take one of the following forms:

(a) σa ≡ {(xk1s1 , x
k1
s2

), (xk2s2 , x
k2
s1

)},

(b) σb ≡ {(xk1s1 , x
k2
s1

), (xk2s2 , x
k1
s2

)},

(c) σc ≡ {(xks , xk
′

s′ ), (x
k′

s′ , x
k
s′), (x

k′

s′ , x
k′
s )} for some k, k′ such that k 6= k′ and s, s′ such

that s 6= s′,

(d) σd ≡ {(xks , xk
′

s′ ), (x
k′
s , x

k
s), (x

k
s , x

k
s′)} for some k, k′ such that k 6= k′ and s, s′ such that

s 6= s′.

Proof of Step 1: Fix a minimal set σ = {(xkisi , x
k′i
s′i

)}ni=1 of pairs that satisfies the three

conditions.

Case 1: For all i, either ki = k′i or si = s′i holds. It is easy to see that either σ =

{(xk1s1 , x
k1
s2

), (xk2s2 , x
k2
s1

)} or σ = {(xk1s1 , x
k2
s1

), (xk2s2 , x
k1
s2

)}. These correspond to Case (a) and

(b).

Case 2: There exists i such that neither ki = k′i or si = s′i holds. Suppose that we have

(xk1s1 , x
k2
s2

) in the pair without loss of generality.

We cannot have (xk2s2 , x
k1
s1

) in σ because of condition (1). Since the sequence {(xkisi , x
k′i
s′i

)}ni=1

satisfies conditions (2) and (3), we must have two pairs such that (xk2s , x
k1
s ) and (xks2 , x

k
s1

)

for some s ∈ {s1, s2} and k ∈ {k1, k2} in the sequence.

Note that we cannot have (xk2s2 , x
k1
s2

) and (xk1s2 , x
k1
s1

) because these imply xk2s2 > xk1s2 > xk1s1 ,

which would contradict that (xk1s1 , x
k2
s2

) in σ satisfies condition (1).

Note also that we cannot have (xk2s1 , x
k1
s1

) and (xk2s2 , x
k2
s1

) because these imply xk2s2 > xk2s1 >

xk1s1 . This again contradicts that (xk1s1 , x
k2
s2

) in σ satisfies condition (1). It follows that we

must be in one of the following two cases.
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Subcase 2.1: The pairs (xk2s2 , x
k1
s2

) and (xk2s2 , x
k2
s1

) are in σ. Then {(xk1s1 , x
k2
s2

), (xk2s2 , x
k1
s2

), (xk2s2 , x
k2
s1

)}
satisfies the three conditions. Since σ is minimal, it must hold that σ = {(xk1s1 , x

k2
s2

), (xk2s2 , x
k1
s2

), (xk2s2 , x
k2
s1

)}.
This corresponds to Case (c).

Subcase 2.2: The pairs (xk2s1 , x
k1
s1

) and (xk1s2 , x
k1
s1

) are in σ. In this case, again by the

minimality of σ, it must hold that σ = {(xk1s1 , x
k2
s2

), (xk2s1 , x
k1
s1

), (xk1s2 , x
k1
s1

)}. This corresponds

to Case (d).

Note that we have exhausted all cases. �

For any set σ ≡ {(xkisi , x
k′i
s′i

)}ni=1 of pairs that satisfies the three conditions in SARSEU,

define

f(σ) =
n∏
i=1

pkisi

p
k′i
s′i

.

Step 2: f(σt) ≤ 1 for each t ∈ {a, b, c, d}.
Proof of Step 2: By Requirement (5),

f(σa) =
pk1s1
pk2s1

pk2s2
pk1s2
≤ 1.

By Requirement (6),

f(σb) =
pk1s1
pk1s2

pk2s2
pk2s1
≤ 1.

To show that f(σc) ≤ 1, assume without loss of generality that σc = {(xk1s1 , x
k2
s2

), (xk2s2 , x
k1
s2

), (xk2s2 , x
k2
s1

)}.
In this case, it must hold that xk2s2 > xk2s1 and xk1s1 > xk1s2 . Hence, by Requirement (6),

pk2s2
pk2s1

pk1s1
pk1s2
≤ 1.

So

f(σc) =
pk1s1
pk2s2

pk2s2
pk1s2

pk2s2
pk2s1

=
pk2s2
pk2s1

pk1s1
pk1s2
≤ 1.

To show that f(σd) ≤ 1, assume without loss of generality that σd = {(xk1s1 , x
k2
s2

), (xk2s1 , x
k1
s1

), (xk1s2 , x
k1
s1

)}.
In this case, it must hold that xk2s1 > xk2s2 and xk1s2 > xk1s1 . Hence, by Requirement (6),

pk2s1
pk2s1

pk1s2
pk1s1
≤ 1.

So

f(σd) =
pk1s1
pk2s2

pk2s1
pk1s1

pk1s2
pk1s1

=
pk2s1
pk2s2

pk1s2
pk1s1
≤ 1.
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Now by using Steps 1 and 2, we can prove the remark. Choose a sequence of pairs

(xkisi , x
k′i
s′i

)ni=1 that satisfies the three conditions in SARSEU. Let σ = {(xkisi , x
k′i
s′i

)}ni=1. For

each t, there exists set of index M(t) such that σ = (∪i∈M(a)σ
a)∪(∪i∈M(b)σ

b)∪(∪i∈M(c)σ
c)∪

(∪i∈M(d)σ
d).

n∏
i=1

pkisi

p
k′i
s′i

= f(σ) =
( ∏
i∈M(a)

f(σa)
)
. . .
( ∏
i∈M(d)

f(σd)
)
≤ 1.

3 Probabilistic Sophistication

We present the detailed arguments behind the example in Section 5 of the paper. The ex-

ample has a dataset that is generated by risk-averse probability sophisticated preferences,

but which violates SARSEU.

In the example, we have S = {s1, s2} and x1 = (2, 2), p1 = (1, 2), x2 = (8, 0), and

p2 = (1, 1). In the following, we define the function V that represents the probabilistically

sophisticated preferences. Fix µ ∈ ∆++ with µs1 = µs2 = 1/2. Any vector x ∈ R2
+

induces the probability distribution on R+ given by x1 with probability 1/2 and x2 with

probability 1/2. Let Π be the set of all probability measures on R+ for which the support

is finite and has cardinality smaller than or equal to 2.

We shall define a function V : Π → R that represents probabilistically sophisticated

preferences. We use h : {(x1, x2) ∈ R2
+ : x1 ≥ x2} → R with the property that

h(x1, x2) ≤ h
(x1 + x2

2
,
x1 + x2

2

)
,

and then define V (π) = h(x̄π, xπ), where xπ is the smallest point in the support of π, and

x̄π is the largest.

Let C1 be the set of vectors x for which x1 + x2 ≥ 8, C3 be the set of vectors x for

which x1 + 2x2 ≤ 6, and C2 be the complement of C1 ∪ C3 in {(x1, x2) ∈ R2
+ : x1 ≥ x2}.

It is easy to see that these sets are pairwise disjoint.

For σ ∈ (6, 8), let lσ ⊂ R2
+ be the set of vectors on the line segment (or the convex

hull of) between (σ, 0) and (σ − 4, σ − 4). We have the following basic properties of σ.

Lemma 1. Suppose that σ ∈ (6, 8).
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1. (x1, x2) ∈ lσ if and only if

x2 =
(σ − 4

4

)
(σ − x1),

2. lσ ⊂ C2,

3. For each x ∈ C2 there is a unique σ ∈ (6, 8) with x ∈ lσ.

Proof. The proof of statement 1 is a direct calculation. For statement 2 note that σ < 8

and σ−4+σ−4 < 8. The function (x1, x2) 7→ x1+x2 is linear and is therefore maximized

on lσ at an extreme. Since this function is smaller than 8 on both extremes, it is smaller

than 8 over all lσ and therefore lσ does not intersect C1. Similarly, it does not intersect

C3 by the linearity of x1 + 2x2 and checking the extremes.

For statement 3, fix σ ∈ (6, 8). Consider the function fσ(x1, x2) = (σ − 4)x1 + 4x2.

One can verify that fσ(σ, 0) = σ(σ − 4) = fσ(σ − 4, σ − 4). Then fσ(x1, x2) = σ(σ − 4)

for all (x1, x2) ∈ lσ, as fσ is linear. Consider σ′ 6= σ. Say σ′ > σ. Then the minimum of

fσ over lσ
′

is obtained at an extreme point of lσ
′
, again by linearity. Now, σ′ > σ implies

that fσ(σ, 0) < fσ(σ′, 0) and fσ(σ − 4, σ − 4) < fσ(σ′ − 4, σ′ − 4). Hence fσ(x) < fσ(x′)

for all x ∈ lσ and x′ ∈ lσ′ . Thus if x ∈ lσ then x /∈ lσ′ .
We complete the proof of statement 3 by showing that for all x ∈ C2 there is σ with

x ∈ lσ. Let x ∈ C2. Consider the quadratic equation σ2 − (4 + x1)σ + 4(x1 − x2) = 0,

derived from the identity in statement 1 of this lemma. By solving this equation explicitly

and choosing the larger solution, we obtain

σ =
4 + x1 +

√
−8x1 + x21 + 16(1 + x2)

2
.

By a direct calculation, it can be shown that

[σ > 6⇔ 6 < x1 + 2x2] and [σ < 8⇔ x1 + 2x2 > 6].

Since x ∈ C2, we obtain σ ∈ (6, 8).

Define the function h : {(x1, x2) ∈ R2
+ : x1 ≥ x2} → R as follows:

h(x) =


1
2
(x1 + x2) if x ∈ C1,

1
3
(x1 + 2x2) if x ∈ C3,

σ(x1, x2)− 4 if x ∈ C2,

where σ(x1, x2) is the unique σ ∈ (6, 8) with x ∈ lσ.
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Lemma 2. If x ∈ C3, x
′ ∈ C2, and x′′ ∈ C1, then h(x) < h(x′) < h(x′′).

Proof. Let σ ∈ R+ be such that x′ ∈ lσ. We must have 8 > σ > 6, so

h(x) =
1

3
(x1 + 2x2) ≤

1

3
6 < σ − 4 = h(x′),

as x1 + 2x2 ≤ 6 and σ > 6; and

h(x′) = σ − 4 < 4 ≤ 1

2
(x′′1 + x′′2) = h(x′′),

as 8 > σ and x′′1 + x′′2 ≥ 8.

Lemma 3. For any (x1, x2) ∈ {(x1, x2) ∈ R2
+ : x1 ≥ x2},

h(x1, x2) ≤ h
(x1 + x2

2
,
x1 + x2

2

)
.

Proof. First, let x ∈ C3. If (x1+x2
2

, x1+x2
2

) /∈ C3 the result follows from Lemma 2. So

suppose that (x1+x2
2

, x1+x2
2

) ∈ C3. Then

h
(x1 + x2

2
,
x1 + x2

2

)
=

1

3

(x1 + x2
2

+ x1 + x2

)
≥ 1

3
(x1 + 2x2) = h(x1, x2),

where the inequality follows from x1 ≥ x2.

Second, suppose that x ∈ C1. Then (x1+x2
2

, x1+x2
2

) ∈ C1 and it is immediate that

h(x) = h(x1+x2
2

, x1+x2
2

).

Thirdly, suppose that x ∈ C2. It is easy to see that (x1+x2
2

, x1+x2
2

) /∈ C3 (as x1+x2
2

+

2x1+x2
2

= x1 + x2 + x1+x2
2
≥ x1 + 2x2 > 6), and the result follows from Lemma 2 when

(x1+x2
2

, x1+x2
2

) ∈ C1, so consider the case when (x1+x2
2

, x1+x2
2

) ∈ C2.

Let σ ∈ (6, 8) be such that x ∈ lσ. Consider the function (x′1, x
′
2) 7→ x′1 + x′2 for

(x′1, x
′
2) ∈ lσ. Note that (x′1, x

′
2) ∈ lσ means that

x′1 + x′2 = x′1 +
σ − 4

4
(σ − x′1) =

(
1− σ − 4

4

)
x1 +

σ − 4

4
σ,

which is monotone increasing in x′1, as σ < 8. But (x1, x2) ∈ lσ implies that x1 ≥ σ − 4,

hence (σ − 4) + (σ − 4) ≤ x1 + x2. Thus,

h(x) = σ − 4 ≤ x1 + x2
2

= h

(
x1 + x2

2
,
x1 + x2

2

)
.
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Lemma 4. For all x, x′ ∈ {(x1, x2) ∈ R2
+ : x1 ≥ x2}, if x′2 ≤ x2 and x′1 ≤ x1, then

h(x′1, x
′
2) ≤ h(x1, x2). If x′2 < x2 or x′1 < x1, furthermore, then h(x′1, x

′
2) < h(x1, x2).

Proof. First x ∈ C1. Then x′ ∈ C1, and there is nothing more to prove. In second place

suppose that x ∈ C2. Then we cannot have x′ ∈ C3 as x1 + 2x2 ≤ x′1 + 2x′2. The result

follows from Lemma 2 if x′ ∈ C1, so focus on the case when x′ ∈ C2. It suffices to show

that σ(x1, x2) is strictly increasing both in x1 and in x2. As shown in the proof of Lemma

3,

σ(x1, x2) =
4 + x1 +

√
−8x1 + x21 + 16(1 + x2)

2
.

By a direct calculation,

∂σ

∂x1
=

1

2

(
1 +

−4 + x1√
−8x1 + x21 + 16(1 + x2)

)
,

∂σ

∂x2
=

4√
−8x1 + x21 + 16(1 + x2)

.

Hence, ∂σ
∂x2

> 0. Since
√
−8x1 + x21 + 16(1 + x2) > −4 + x1, we also obtain ∂σ

∂x1
> 0.

Finally, when x ∈ C3 the conclusion either follows from Lemma 2 or from the mono-

tonicity of x1 + 2x2.

As noted in the main paper, we define V : Π → R by V (π) = h(x̄π, xπ), where

xπ is the smallest point in the support of π, and x̄π is the largest. Recall that h is

defined on {(x1, x2) ∈ R2
+ : x1 ≥ x2}. So, the definition of V shows that the preferences

represented by V are symmetric across 45 degree line. Write π ≺ π′ if π′ strictly first-order

stochastically dominates π. Let Fπ and Fπ′ be the CDFs of π and π′, respectively.

Lemma 5. π ≺ π′ implies that V (π) < V (π′).

Proof. Assume π ≺ π′. By Lemma 4, it suffices to show that xπ ≤ xπ
′

and x̄π ≤ x̄π
′

and that at least one of the inequalities is strict. Suppose that xπ > xπ
′

or x̄π > x̄π
′
.

By choosing x such that xπ
′
< x < min{xπ′ , xπ}, we have Fπ′(x) = 1/2 > 0 = Fπ(x).

This contradicts that π ≺ π′. Hence, xπ ≤ xπ
′
. In the same way, we obtain x̄π ≤ x̄π

′
.

Moreover, since π 6= π′, we obtain xπ < xπ
′

or x̄π < x̄π
′
.

For any π ∈ Π, let e(π) be the degenerate lottery that yields the expected value of π

(recall that π has finite support) with probability 1. The following result is immediate

from Lemma 3.
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Lemma 6. V (π) ≤ V (e(π))

Lemma 5 establishes that V represents probabilistically sophisticated preferences.

Lemma 6 says that the preferences are also risk-averse. We now proceed to verify that

the dataset defined at the outset is rationalizable an agent with utility function V . We

write πx ∈ Π for the probability measure induced by x ∈ R2
+.

For observation 1, the budget set is

B(p1, p1 · x1) = {x ∈ R2
+ : x1 + 2x2 ≤ 6}.

For all x ∈ B(p1, p1 · x1), it is clear that max{x1, x2}+ 2 min{x1, x2} ≤ x1 + 2x2 ≤ 6, and

hence that

V (πx) =
1

3
(max{x1, x2}+ 2 min{x1, x2}) ≤ 2 = V (πx1)

For observation 2, the budget set is

B(p2, p2 · x2) = {x ∈ R2
+ : x1 + x2 ≤ 8}.

Note that h(x) ≤ 2 for all x ∈ C3 and h(x) ≤ 4 for all x ∈ C2. Since B(p2, p2 ·x2)∩C1

consists of vectors for which x1 + x2 = 8, and h(x1, x2) = 4 for those vectors, it follows

that V (πx) ≤ V (πx2) for all x ∈ B(p2, p2 · x2).

4 Objective Expected Utility

In this section, we present the relationship between our main theorem and results in

Green and Srivastava (1986), Varian (1983b), and Kubler et al. (2014). These authors

discuss a setting where an objective probability µ ∈ ∆++ is given. Given the objective

probability µ, they seek to understand when there is a utility function for which the

observed purchases maximize expected utility.

We show that we can write a version of our SARSEU that uses “risk neutral” prices

in place of regular prices. We show that this modified axiom characterizes the objective

expected utility theory. Our modified SARSEU is therefore equivalent to the conditions

studied by Green and Srivastava (1986) and Varian (1983b), and to the axiom in Kubler

et al. (2014).

It is worth emphasizing that Kubler et al. (2014) allows µ to depend on k, so that the

agent may use a different prior when faced with different optimization problems. In our

subjective probability setup this would make no sense because everything is rationalizable

10



by suitably choosing priors in each optimization problem. Here we are being consistent

with the rest of the paper in assuming a fixed prior through all observations, but the

result can be relaxed to fit a variable-prior setup.

Definition 1. A dataset (xk, pk)Kk=1 is objective expected utility (OEU) rational if there

is a concave and strictly increasing function u : R+ → R such that, for all k,

pk · y ≤ pk · xk ⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks).

In the papers cited above, a crucial aspect of the dataset are the price-probability

ratios, or “risk neutral prices,” defined as follows: for k ∈ K and s ∈ S

ρks =
pks
µs
.

A natural modification of SARSEU using the objective probability µ is as follows:

Strong Axiom of Revealed Objective Expected Utility (SAROEU): For any

sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi > x
k′i
s′i

for all i;

2. each k appears in ki (on the left of the pair) the same number of times it appears in

k′i (on the right):

The product of price-probability ratios satisfies that

n∏
i=1

ρkisi

ρ
k′i
s′i

≤ 1.

The prior µ is observable, so we do not need the requirement on s in SARSEU. Instead,

SAROEU restricts the products of price-probability ratios, and not the product of price

ratios.

The notion of dataset in Kubler et al. (2014) is the same as in our paper. Kubler

et al. (2014) investigate the case of strict concave utility, while we have focused on weak

concavity. A modification of Kubler et. al’s axiom that allows for weak concavity is as

follows:1

1SAREU and Kubler et. al’s axiom are different only in one point: their axiom requires∏m
i=1

(
max

s,s′:x
k(i)
s >x

k(i+1)

s′

ρk(i)
s

ρ
k(i+1)

s′

)
< 1.

11



Strong Axiom of Revealed Expected Utility (SAREU): For all m ≥ 1 and

sequences k(1), . . . , k(m) ∈ K,

m∏
i=1

(
max

s,s′:x
k(i)
s >x

k(i+1)

s′

ρ
k(i)
s

ρ
k(i+1)
s′

)
≤ 1.

It is easy to modify the argument in Kubler et al. (2014) to show the equivalence of

a dataset being OEU-rational, satisfying the conditions in Green and Srivastava (1986)

and Varian (1983b).

Proposition 7. A dataset is OEU-rational if and only if it satisfies SAROEU.

This result implies that SAROEU, SAREU, and the conditions in Green and Srivastava

(1986) and Varian (1983b) are equivalent.

Proof. Using the result of Kubler et al. (2014), we prove the result by establishing the

equivalence between SAROEU and SAREU.

Suppose that the dataset (xk, pk)Kk=1 satisfies SAROEU. Suppose, by way of contra-

diction, that SAREU is violated. Then there exist m ≥ 1 and k1, . . . , km ∈ K such that∏m
i=1

(
max

s,s′:x
ki
s >x

ki+1
s′

(ρkis /ρ
ki+1

s′ )
)
> 1. If m = 1 it clearly contradicts SAROEU.

In the following we will consider the case where m > 1. Then, there exists a sequence

(x
k∗i
s∗i
, x

k∗i+1

s
′∗
i

)mi=1 with k∗m+1 = k∗1 such that
∏m

i=1(ρ
k∗i
s∗i
/ρ

k∗i+1

s
′∗
i

) > 1. Since the sequence satisfies

the conditions in SAROEU, this contradicts SAROEU.

Now, we establish that SAREU implies SAROEU. Choose a sequence (xkisi , x
k′i
s′i

)ni=1 of

pairs in which xkisi > x
k′i
s′i

; each k appears in ki (on the left of the pair) as many as in k′i (on

the right). If n = 1, we have that ki = k′i = k. Consider the sequence k(1) = k = k(2).

Then SAREU implies that ρks/ρ
k
s′ ≤ 1, as desired.

Now, consider the case in which n ≥ 2.

Step 1: There exists a collection of cycles such that each cycle (k(i))2mi=1 satisfies (i)

x
k(i)
s(i) > x

k(i+1)
s′(i+1) for i = 1, 3, . . . , 2m− 1 and (ii) k(2m) = k(1).

Proof of Step 1: First consider the pair (xk1s1 , x
k′1
s′1

). Let k(1) = k1 and k(2) = k′1. Since

each k appears as ki as many times as k′i, there exists a pair (xkisi , x
k′i
s′i

) with ki = k(2). Let

k(3) = ki and k(4) = k′i. If k(4) = k(1), then we have a cycle in k. Otherwise, for the

same reason as was mentioned above, there is a (xkisi , x
k′i
s′i

) with ki = k(4). We can now let

k(5) = ki and k(6) = k′i. If k(6) = k(1), then we again have a cycle. Since the number

of data that appear in the sequence we started from is finite, we must eventually close
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a cycle. Each time we find a cycle, we can start the procedure from any remaining pair

(xkisi , x
k′i
s′i

) in the dataset. Since each k appears in ki the same number of times it appears

in k′i, we must exhaust all pairs after finding a finite collection of cycles.

Step 2:
∏n

i=1

ρ
ki
si

ρ
k′
i

s′
i

≤ 1.

Proof of Step 2: For each cycle (k(i))2mi=1, we have that

m/2∏
i=1

ρ
k(2i−1)
s(2i−1)

ρ
k(2i)
s′(2i)

≤
m/2∏
i=1

(
max

s,s′:x
k(2i−1)
s >x

k(2i)

s′

(ρk(2i−1)s

ρ
k(2i)
s′

))
≤ 1,

as
ρ
k(2i−1)
s(2i−1)

ρ
k(2i)
s′(2i)

≤ max
s,s′:x

k(2i−1)
s >x

k(2i)

s′

(ρk(2i−1)s

ρ
k(2i)
s′

)
.

Then, since the product over each cycle does not exceed 1, the product of the cycles

satisfies that:
n∏
i=1

ρkisi

ρ
k′i
s′i

≤ 1.

5 Relationship between SARSEU and Savage’s (1954)

axioms

In this section, we study the relationship between SARSEU and Savage’s (1954) axioms.

Savage’s axiomatization involves seven axioms, labeled P1-P7. We show that SARSEU

implies Savage’s axioms, except for P1 and P6: P1 requires preference to be a weak order,

which does not make sense for our primitive. P6 requires the set of states to be infinite.

Specifically, it is interesting to disentangle the role of SARSDU (Section 4 of the paper)

and SARSEU in ruling out violations of Savage’s axioms. It turns out that a violation

of P2 or P7 will imply a violation of SARSDU, the axiom behind a state-dependent

representation. This makes sense, as P2 and P7 are essentially separability assumption.

A violation of P4 has a different structure, and we show that it violates SARSEU (actually

it violates Requirement (6)). Finally, P3 and P5 cannot be violated in our setup.

In this section, we use the following notations: For any A ⊂ S and x ∈ RS
+ and

p ∈ RS
+, xA denotes the vector in RA

+ obtained by restricting s 7→ xs to A; similarly, pA

denotes the vector in RA
+ obtained by restricting s 7→ ps to A.
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Recall that Savage’s primitive is a complete preference relation over acts. In contrast,

our primitive is a dataset (xk, pk)Kk=1. To relate the two models, we define a revealed

preference relation from the dataset (xk, pk)Kk=1 and investigate when it satisfies Savage’s

axioms.

Definition 2. For any x, y ∈ RS
+,

(i) x � y if there exists k ∈ K such that x = xk and pk · x ≥ pk · y;

(ii)x � y if there exists k ∈ K such that x = xk and pk · x > pk · y. 2

There is one basic problem: Savage’s primitive is a complete preference relation over

acts, but a dataset will contain much less information than a preference relation over RS
+.

The revealed preference relation is going to be incomplete: many acts in RS
+ will not be

comparable. Such incompleteness gives rise to trivial violations of Savage’s axioms, as his

axioms were formulated for complete preferences. For example, one of Savage’s axiom is

as follows:

Axiom (P2). Let x, y, x′, y′ ∈ RS
+ and A ⊂ S such that xA = x′A and yA = y′A and

xAc = yAc and x′Ac = y′Ac. Then x � y if and only if x′ � y′.

The revealed preference relation violates P2 when only one of x, y and x′, y′ are com-

parable. This is not a particularly interesting violation of Savage’s axioms. A more

meaningful exercise is to show how a violation of Savage’s axioms that is not due to

incompleteness implies a violation of SARSEU.

Definition 3. Let � be the revealed preference relation defined from (xk, pk)Kk=1 by Defi-

nition 2. Then we say that the dataset violates P2 if there is x, y, x′, y′ ∈ RS
+ and A ⊂ S

as in the statement of P2 for which x � y and y′ � x′; or y � x and x′ � y′.

Proposition 8. If the dataset violates P2, then it violates SARSDU.

Proof. For a subset A of S and a dataset (xk, pk) ∈ RS
+ × RS

++, we consider (xkA, p
k
A) ∈

RA
+ ×RA

++. This defines a dataset (xkA, p
k
A)Kk=1 on a restricted domain with A (instead of

S). On this restricted domain, we can define WARP and SARSDU in the same way as

we defined in Section 4 of the paper. SARSDU implies WARP on this restricted domain.

Suppose that the dataset (xk, pk)Kk=1 violates P2. Then by definition of �, and the fact

that xAc = yAc and x′Ac = y′Ac , the dataset (xkA, p
k
A)Kk=1 violates WARP. Then (xkA, p

k
A)Kk=1

violates SARSDU, which implies that (xk, pk)Kk=1 violates SARSDU.

2It is worth emphasizing that this definition already has separability built in, which goes a long way

to satisfying Savage’s axioms.
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We shall use the following notation. We use 1A to denote the indicator vector for

A ⊂ S in RS
+; and for a scalar x ∈ R+, x1A denotes the vector in RA

+ with x in all its

entries (the constant vector x).

Axiom (P4). Suppose A,B ⊂ S; x > y, x′ > y′. Then, (x1A, y1Ac) � (x1B, y1Bc) if and

only if (x′1A, y
′1Ac) � (x′1B, y

′1Bc).

Definition 4. Let � be the revealed preference relation defined from (xk, pk)Kk=1 by Defi-

nition 2. Then we say that the dataset violates P4 if there is A,B ⊂ S and scalars x, x′, y

and y′ as in the statement of P4 for which (x1A, y1Ac) � (x1B, y1Bc) and (x′1B, y
′1Bc) �

(x′1A, y
′1Ac), or (x1B, y1Bc) � (x1A, y1Ac) and (x′1A, y

′1Ac) � (x′1B, y
′1Bc).

Proposition 9. If a dataset violates P4, then it violates SARSEU.

Proof. Without loss of generality, we can assume that
∑

s∈S p
k
s = 1 for all k. The reason

is that we can normalize prices to add up to 1 without affecting the validity of SARSEU.

Let A,B ⊂ S, and let x, x′, y and y′ be scalars as in the statement of P4, such

that (x1A, y1Ac) � (x1B, y1Bc) and (x′1B, y
′1Bc) � (x′1A, y

′1Ac). Suppose, towards a

contradiction, that the dataset satisfies SARSEU.

First, (x1A, y1Ac) � (x1B, y1Bc) means that there is an observation k for which xk =

(x1A, y1Ac) and

pk · xk = pk · (x1A, y1Ac) > pk · (x1B, y1Bc), (7)

while (x′1B, y
′1Bc) � (x′1A, y

′1Ac) means that there is an observation k′ such that

pk
′ · xk′ = pk

′ · (x′1B, y′1Bc) ≥ pk
′ · (x′1A, y′1Ac). (8)

Secondly, Equation (7) implies that

x
∑
s∈A

pks + y

(
1−

∑
s∈A

pks

)
> x

∑
s∈B

pks + y

(
1−

∑
s∈B

pks

)
,

and therefore that
∑

s∈A p
k
s >

∑
s∈B p

k
s , as x > y. Similarly, Equation (8) and x′ > y′

implies that
∑

s∈B p
k′
s ≥

∑
s∈A p

k′
s . Hence∑

s∈A\B

pks >
∑
s∈B\A

pks and
∑
s∈B\A

pk
′

s ≥
∑
s∈A\B

pk
′

s (9)

Thirdly, for any s ∈ A \ B and any s′ ∈ B \ A we have that x = xks > xks′ = y, and

x′ = xk
′

s′ > xk
′
s = y′. Hence, SARSEU implies that

pks
pks′

pk
′

s′

pk′s
≤ 1.3

3Observe that here we are essentially using Requirement (6).
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Thus, for any s′ ∈ B \ A,

pk
′

s′

∑
s∈A\B

pks ≤ pks′
∑
s∈A\B

pk
′

s ,

which implies that ∑
s′∈B\A

pk
′

s′

∑
s∈A\B

pks ≤
∑

s′∈B\A

pks′
∑
s∈A\B

pk
′

s ,

a contradiction with (9).

We now discuss P3 and P7 (P5 is a non-triviality axiom that is always satisfied in our

setup). This requires some preliminary definitions.

Definition 5. For any A ⊂ S and xA, yA ∈ RA,

(i) xA �A yA if there exist z, w ∈ RS such that zA = xA and wA = yA and zAc = wAc,

z � w.

(ii) xA �A yA if there exist z, w ∈ RS such that zA = xA and wA = yA and zAc = wAc,

z � w.

Definition 6. A ⊂ S is null if for any x, y ∈ RS
+ such that xAc = yAc, it is false that

x � y.

Axiom (P3). Suppose that A is not null. Then, x1A �A y1A if and only if x > y.

Axiom (P7). (i) xs1A �A yA for all s ∈ A implies xA �A yA; (ii) yA �A xs1A for all

s ∈ A implies yA �A xA.

Definition 7. Let � be the revealed preference relation defined from (xk, pk)Kk=1 by Defi-

nition 2. Then we say that the dataset violates

1. P3 if there is non null A ⊆ S, x, y ∈ R+, and z ∈ RAc

+ , for which (x1A, z) � (y1A, z)

and y ≥ x, or (y1A, z) � (x1A, z) and x > y.

2. P7 if there is a nonempty A ⊆ S and x, y ∈ RS
+ such that one of the following is

true

(a) yA �A xA while xs1A �A yA for all s ∈ A;

(b) xA �A yA while yA �A xs1A for all s ∈ A;

Proposition 10. (i) No dataset can violate P3; (ii) if a dataset violates P7, then it

violates SARSDU.
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Proof. Fix a dataset that violates P3. Let A, x, y and z be as in the definition of a

violation of P3. Suppose that (x1A, z) � (y1A, z) and y ≥ x. Then there is an observation

xk = (x1A, z) with

x
∑
s∈A

pks +
∑
s∈Ac

pkszs = pk · (x1A, z) > pk · (y1A, z) = y
∑
s∈A

pks +
∑
s∈Ac

pkszs.

Hence, x > y, as
∑

s∈A p
k
s > 0. This contradicts that the dataset violates P3.

Suppose that yA �A xA while xs1A �A yA given A for all s ∈ A. Let k be such that

yA = xkA. For s ∈ A, let ks be such that xs1A = xksA . yA �A xA implies pkA · xkA ≥ pkA · xA.

For all s ∈ A, xs1A �A yA implies pksA · x
ks
A > pksA · xkA.

Let s∗ be such that xs∗ ≤ xs for all s ∈ A. Then pkA · xkA ≥ pkA · xA implies that

pkA · xkA ≥ pkA · x
ks∗
A .

Now, pks∗A · xks∗A > pks∗A · xkA implies that the dataset (xkA, p
k
A)Kk=1 violates WARP on

the restricted domain. So the dataset (xkA, p
k
A)Kk=1 must violate SARSDU on the restricted

domain. Hence, the dataset (xkA, p
k
A)Kk=1 must violate SARSDU in the original domain.
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