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Abstract

Altruism refers to a willingness to benefit others, even at one’s own expense. In

contrast, selfishness refers to prioritizing one’s own interests with no consideration

for others. However, even if an agent is selfish, he might nevertheless act as if he

were altruistic out of selfish concerns triggered when his action is observed; that is,

he might seek to feel pride in acting altruistically and to avoid the shame of acting

selfishly. We call such behavior impurely altruistic. Alternatively, even if an agent is

altruistic, he might nevertheless give in to the temptation to act selfishly. We call such

behavior impurely selfish. This paper axiomatizes a model that distinguishes altruism

from impure altruism and selfishness from impure selfishness. In the model, unique

real numbers separately capture altruism and the other forces of pride, shame, and the
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temptation to act selfishly. We show that the model can describe recent experiments

on dictator games with an exit option. In addition, we describe an empirical puzzle

that government spending only partially crowds out consumers’ donations, contrary to

the prediction based on standard consumer theory.

Keywords: Impure altruism, altruism, warm glow, pride, shame, temptation, dictator

games, and preferences on sets.

JEL Classification Numbers: D03, D63, D64, D81.

1 Introduction

Altruism refers to a willingness to benefit others, even at one’s own expense. Selfishness,

the opposite of altruism, refers to prioritizing one’s own interests, with a concomitant lack

of consideration for others. While these definitions may seem clear, it is difficult to detect

from an agent’s actions alone whether he is truly altruistic or selfish.

Even if an agent is indifferent to the welfare of others and therefore selfish by definition,

he might nevertheless act as if he were truly altruistic (i.e., act to benefit others) out of

selfish concerns triggered when his action is observed; that is, he might seek to feel pride in

having acted altruistically or to avoid the shame of having acted selfishly.

In contrast to pure altruism, we say that an agent exhibits impure altruism if he chooses

an action that benefits others in order to feel pride in acting altruistically and to avoid the

shame of acting selfishly. (In this paper, the terms altruism and pure altruism will be used

interchangeably, as will the terms selfishness and pure selfishness.)

On the other hand, even if an agent is willing to benefit others and is therefore by

definition altruistic, he might nevertheless give in to the temptation to act selfishly. In

contrast to pure selfishness, we say that an agent exhibits impure selfishness if the temptation

to act selfishly motivates him to depart from his tendency to act altruistically.1 An agent

1Of course, such an agent could also be said to exhibit impure altruism, since his altruistic tendencies
could be seen as rendered “impure” whenever he gives in to the temptation to act selfishly. However, we feel
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can exhibit impure selfishness, especially when an immediate payoff is at stake.2

Moreover, these three forces–pride, shame, and the temptation to act selfishly–could

interact in conflicting ways in affecting an agent’s actions.3 For example, an agent could

behave impurely altruistically even if he feels a temptation to act selfishly, when his desire

to avoid the shame has overwhelmed the temptation. Conversely, an agent could behave

impurely selfishly even if he knows that he will feel shame at doing so, when the temptation

has overwhelmed such shame.

In the axiomatic literature on preferences over menus temptation and shame have been

studied separately: Gul and Pesendorfer (2001) have proposed a model of temptation; Dil-

lenberger and Sadowski (2012) have proposed a model of shame. In an independent project,

Evren and Minardi (2014) study warm glow, which is a similar phenomenon to pride. More-

over, in the latter two works, the parameters capturing the psychological effects are not

uniquely identified.

The purpose of this paper is to axiomatize a model in which unique real numbers sepa-

rately capture altruism as well as pride in acting altruistically, shame of acting selfishly, and

the temptation to act selfishly. The improved identification comes from a linear structure

of our model. On the other hand, the linear structure makes our model restrictive. For

example, our model satisfies the independence of irrelevant alternatives (IIA). That is, the

decision maker will not change his choice even if an irrelevant element is removed from his

set of alternatives. We discuss those restrictions at the end of Section 2.

Our model can capture the trade-off between the three forces and, thereby, distinguish

that the term impure altruism is more suitable for the selfish person who acts altruistically when motivated
by his inherent selfishness. As a result, we use the term impure selfishness for the opposite situation, namely,
a typically altruistic agent who sometimes gives in to the temptation to act selfishly.

2Indeed, Noor and Ren (2011) found that in their experiments the average donation from dictators to
receivers has significantly decreased when the timing of the payment to the subjects is changed from one
month later to immediately after the dictators’ choices.

3Throughout this paper, when we use the terms, pride in acting altruistically, shame of acting selfishly,
and the temptation to act selfishly, we are referring to individual acts of an agent, and not to an agent’s
personality or general tendencies. For example, if we say that an agent seeks to “feel pride in acting
altruistically,” that description will refer to the pride in one particular altruistic act, rather than to the
agent’s typical or habitual behavior.
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altruism from impure altruism and selfishness from impure selfishness. For example, we can

show that the agent could behave impurely altruistically if his index of shame is larger than

that of the temptation; otherwise, an agent could behave impurely selfishly. Moreover, we

provide axiomatizations of special cases which capture only pride, shame, or the temptation,

respectively.

We adopt the same set up as Dillenberger and Sadowski (2012), which distinguishes the

ex-ante private stage and the ex-post public stage. The setup is necessary to study pride,

shame, and the temptation at the same time.

To conclude the introduction, we clarify (i) the definition of shame in comparison with a

related emotion, guilt; (ii) the definition of pride; and (iii) the difference between temptation

and two other psychological effects, pride and shame. There is a clear distinction between

shame and guilt in Psychology. According to Hiebert (1985, p. 213), “An agent may suffer

from guilt although no one else knows of his or her misdeed.” This is the crucial difference

between shame and guilt: an agent would not suffer from shame if no one else knows of his

misdeed. In this paper, we do not consider guilt; we focus on shame alone. To study guilt,

the two stage setup is not enough because the agent would feel guilt even at the ex-ante

private stage.

There are various definitions of pride in Psychology. (See Lea and Webley (1997) for a

survey on pride in Psychology and for a discussion on economic consequences of pride.) In

Development Psychology, pride has often been studied in its comparison with shame. (See

Scheff (1988) and Taylor (1985) for example.) Scheff (1988) claims that conformity to social

expectations causes “the pleasure of pride and fellow feeling”; while disconformity causes

“the punishment of embarrassment, shame, or humiliation”. In this paper, we consider the

particular social expectations that an agent should act altruistically. Hence, by pride of

acting altruistically, we mean a feeling of pleasure derived from the social recognition of

one’s altruistic choice. Even without social recognition and even if an agent is not altruistic,

he may derive a feeling of pleasure, such as warm glow, from one’s altruistic choice. We do

not study such feelings in this paper.
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Finally, note that the temptation to act selfishly is different from shame and pride in the

sense that the temptation is not caused by the publicity of choices but by the immediacy of

the payoff at the ex-post stage. However, we think that the effect of temptation at the ex-post

public stage is so significant that we should incorporate the effect into our model. Indeed, in

experiments on dictator games, Noor and Ren (2011) found that the average donation from

dictators to receivers is 65 percent of the total endowment when the payment to subjects

is made one month later, but only 38 percent when the payment is made immediately after

the dictators’ choices.

The rest of the paper is organized as follows. In Section 2, we provide a preview of

the results. In Section 3, we provide a literature review. In Section 4.1, we present the

model and the axioms. In Section 4.2, we present a representation theorem and a sketch

of the proof. In Section 4.3, we show the uniqueness of the representation. In Section 5,

we provide axiomatizations of the special cases and discuss their relationship with Gul and

Pesendorfer (2001), Dillenberger and Sadowski (2012), and Evren and Minardi (2014). In

Section 6, we study characterizations of parameters and provide comparative statics. In

Section 7, we study the agent’s ex-post choices and provide characterizations of impure

altruism and impure selfishness. In Section 8, we show that the model is consistent with

existing experimental evidence. In Section 9, we provide an application. All proofs are in

Appendix.

2 Preview of Results

2.1 Model

We investigate a decision maker who determines an allocation between himself and other

passive agents. The decision maker’s choice consists of two stages. In the first ex-ante stage,

the decision maker chooses a set of allocations. We assume that the other agents do not

know that the decision maker has such choices. His ex-ante choices are private.
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In the ex-post stage, the decision maker chooses an allocation from the set that he chose

ex-ante. We assume that other agents can observe which allocation the decision maker

chooses from the set, even though they do not know that he chose the set ex-ante.

Ex-postEx-ante

Choose a set A of allocations privately Choose an allocation from the set A publicly

Figure 1: Two-Stage Decision Problem

Because his choices will be public at the ex-post public stage, the decision maker could

anticipate that he will feel pride in acting altruistically, or shame of acting selfishly at

that stage. In addition, the decision maker could anticipate that he will suffer from the

temptation to act selfishly ex-post. In light of these potential ex-post feelings, the decision

maker chooses a set ex-ante. (We, henceforth, call these three feelings simply, pride, shame,

and temptation, when there is no danger of confusion.) This set up is not new: Dillenberger

and Sadowski (2012) have proposed the same model that distinguishes the ex-ante private

stage and the ex-post public stage to study the effect of shame.

To introduce the representation, we first define some notation. The decision maker is

denoted by 1 and the finite set of other agents is denoted by S. Define I = {1}∪S to be the

set of all agents. A payoff profile p ≡ (pi)i∈I is called an allocation. An allocation p is also

denoted by (p1, pS), where p1 is a payoff to the decision maker and pS ≡ (pi)i∈S is a payoff

profile to the other agents.

When the decision maker chooses a set of allocations at the ex-ante private stage, he

maximizes the following utility function. The utility of a set A is :

V (A) = max
p∈A

[

∑

i∈I

αiu(pi) + β1max
q∈A

α1(u(q1)− u(p1))− βS max
r∈A

(
∑

i∈S

αiu(ri)−
∑

i∈S

αiu(pi))
]

, (1)

where α1 > 0, β1 < 1, βS ≥ 0, and
∑

i∈S αi = 1. Moreover, (αi)i∈I , β1, and βS are unique

and u is unique up to positive affine transformation. The maximizer p over A is the decision
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maker’s ex-post public choice from A.

The first term of the model,
∑

i∈I αiu(pi), captures the decision maker’s utilitarian eval-

uation of his ex-post choice of p. Hence, we call the model a generalized utilitarian (GU)

model.

The second term, β1maxq∈A α1(u(q1)−u(p1)), captures the utility arising from the pride

of acting altruistically if β1 ≥ 0 or the disutility arising from the temptation to act selfishly

(i.e., the temptation to maximize his own allocation) if β1 ≤ 0. The utility and disutility are

proportional to the difference between the maximum selfish utility maxq∈A α1u(q1) and the

actual utility α1u(p1) attained by the decision maker’s ex-post choice of p. The difference

captures how much the decision maker controls himself so as to keep himself from acting

selfishly (i.e., from maximizing his selfish interest).

Similarly, the third term of the GU model, βS maxr∈A(
∑

i∈S αiu(ri) −
∑

i∈S αiu(pi)),

captures the disutility due to the shame of acting selfishly. The disutility is proportional to

the difference between the maximum social utilities maxr∈A
∑

i∈S αiu(ri) (i.e., the maximum

sum of the utilities of the other agents) and the actual social utilities
∑

i∈S αiu(pi) attained

by the decision maker’s ex-post choice of p. Hence, the difference captures how much utility

the other agents lose because of the decision maker’s ex-post choice.

2.2 α captures Altruism and Selfishness; β captures Impure Altru-

ism and Impure Selfishness

In the GU model, the relative weight on the social utility with respect to the selfish utility

captures the level of pure altruism. Since
∑

i∈S αi = 1, the relative weight is (
∑

i∈S αi)/α1 =

1/α1. In other words, α1 captures the level of pure selfishness. To see this interpretation of

α1, note that whether or not the decision maker is purely altruistic is determined through

his ex-ante private choices. This is because in private choices the decision maker would feel

neither pride nor shame. Moreover, in ex-ante choices he would not feel temptation.

In the GU model, ex-ante private choices between allocations p and q are formalized as
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choices between the singleton sets, such as {p} and {q }. Hence, the utility function that

captures only pure altruism is as follows:

V ({p}) =
∑

i∈I

αiu(pi) = α1u(p1) +
∑

i∈S

αiu(pi). (2)

Therefore, the smaller α1 is, the more the decision maker is willing to sacrifice his own

allocation p1 to improve the others’ allocations pS.

Impure Altruism

Impure Selfishness

0
PrideTemptation

Shame

βS

β1
β1 < 0 β1 > 0

βS < −β1

βS > −β1

Figure 2: Pride, Shame, and Temptation Cause Impure Altruism and Impure Selfishness

In contrast to the ex-ante private choices, ex-post public choices can be affected by

pride, shame, and the temptation to act selfishly. To see this effect, note that (1) can be

expressed as V (A) = maxp∈A[(1−β1)α1u(p1)+ (1+βS)
∑

i∈S αiu(pi)]+β1maxq∈A α1u(q1)−

βS maxr∈A
∑

i∈S αiu(ri) for any set A of allocations. This representation shows that the

ex-post public choice p (i.e., the maximizer over A) maximizes

U(p) ≡ (1− β1)α1u(p1) + (1 + βS)
∑

i∈S

αiu(pi). (3)

Note that since β1 is always smaller than one, the function U is monotonic in the decision

maker’s utility u(p1) and the social utility
∑

i∈S αiu(pi). Hence, no matter what the pa-

rameters are, the decision maker will never derive utility from decreasing his own utility (or
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social utility) unless it increases social utility (or his own utility, respectively).

A comparison between (3) and (2) shows that the decision maker’s choices become more

altruistic at the ex-post public stage (i.e., in (3)) than they are at the ex-ante private stage

(i.e., in (2)) if and only if βS > −β1. To see this note that the relative weight on the social

utility
∑

i∈S αiu at the ex-post public stage is (1 + βS)/((1− β1)α1). The relative weight at

the ex-ante private stage is 1/α1. Hence, the relative weight at the ex-post public stage is

higher than the relative weight at the ex-ante private stage if and only if 1 + βS > 1− β1.
4

In this way, βS > −β1 captures impure altruism caused by pride in acting altruistically or

shame of acting selfishly. In the same way, βS < −β1 captures impure selfishness motivated

by the temptation to act selfishly.

There are some limitations of the GU model. As it can be seen in (3), the ex-post

choice satisfies IIA. That is, the decision maker will not change his ex-post choice even if an

unchosen element is removed from his set of alternatives. In addition, the GU model does

not incorporate inequality aversion since the GU model implies that the decision maker is a

utilitarian. Both limitations result from the linearity of the GU model, which at the same

time make it possible for us to identify the parameters (i.e., α and β) uniquely.

Second, since the model is based on observable preferences at the ex-ante (private) stage,

an outside observer must know the decision maker’s choices at the stage. Hence, the GU

model does not incorporate pride and shame resulting from the outside observer. This

limitation might not be so serious because, by definition, the outside observer is not included

in the set S of the other agents. Therefore, the outside observer’s utility is not determined

by the decision maker’s choices. Consequently, the decision maker would feel little pride and

shame resulting from the outside observer.5

Third, in the GU model, the decision maker evaluates the other agents’ allocations (pi)i∈S

by using his own utility function u. This limitation can be fixed easily by using additional

4We provide behavioral characterizations of impure altruism and impure selfishness in Section 7.2.
5Indeed, in a well-designed experiment, subjects should not consider experimenters’ intentions or their

welfare. In such an experiment, the experimenters should have no effect on whether the decision maker feels
shame or pride.
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primitive preferences (%i)i∈S of the other agents. With these additional primitives, we could

immediately obtain an extension of the GU model in which each agent’s allocation pi is

evaluated by the agent’s utility function ui representing %i.

Finally, in the GU model, the temptation to act selfishly and pride of acting altruistically

do not coexist. The decision maker can exhibit either pride in acting altruistically (i.e.,

β1 > 0) or the temptation to act selfishly (i.e., β1 < 0) but not both. This is because the

decision maker feels pride in acting altruistically only when he does not yield to such a

temptation. In other words, what can be captured in the GU model by the index β1 is the

net effect of the temptation and the pride. Since our main interest in the paper is to identify

the effects of those feelings on choices, this limitation may not be so serious because at the

end only the net effects matter on choices.

To conclude the section, we mention experimental evidence and an application. We show

that the GU model can describe recent experimental evidence on dictator games with an

exit option such as Dana et al. (2006), Broberg et al. (2007), and Lazear et al. (2012). The

experimental design fits with our model. The GU model can be consistent not only with

the choice of exit but also with the finding that both low-level and high-level donors play the

dictator games, while the medium-level donors exit.

In addition, we show that the GU model is consistent with a classical empirical puzzle

involving charitable donations. Standard consumer theory, which assumes that consumers’

preferences are solely defined on allocations, predicts that government spending for charity

should completely crowd out their donation. However, empirical evidence suggests that the

crowding out is far from complete, and is at most about 50 percent. (See Andreoni (2006)

for a survey of the evidence.) By applying the GU model, we describe the partial crowding

out under the condition that consumers’ pride dominates their shame (i.e., β1 > βS).
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3 Related Literature

In this section, we overview the related literature. In Section 5, we explicitly compare our

models and axioms with the models and axioms studied in Gul and Pesendorfer (2001),

Dillenberger and Sadowski (2012), and Evren and Minardi (2014).

In the axiomatic literature on preferences over menus, since Dekel, Lipman, and Rusti-

chini (2001) proposed a general frame work, many models have been proposed in specific

contexts. Gul and Pesendorfer (2001) propose a general model of temptation. However,

they do not study social decision making in particular. In their model, moreover, the self-

control problem is captured by the difference between two von Neumann-Morgenstern utility

functions. In contrast, we study a specific temptation in a social context: the temptation

to act selfishly. Moreover, the GU model captures the self-control problem by the unique

nonnegative number β1, which facilitates distinguishing selfishness from impure selfishness.

Dillenberger and Sadowski (2012) have proposed the first model on social decision making

within the literature on preferences over menus.6 The purpose of their paper is to capture

shame of acting selfishly; the other forces, namely pride and temptation, are outside of their

scope. In their model, shame is captured by two nonunique functions. Because of this

generality, their model can allow violations of IIA and inequality aversion.

Independent of our paper, several recent papers address related phenomena. Noor and

Ren (2011) study guilt and temptation to avoid guilt by extending the model of Gul and

Pesendorfer (2001) into preferences over menus of menus of allocations. Guilt is an impor-

tance issue but, as mentioned, there is a clear distinction between shame and guilt. In this

paper, we focus on shame.

Evren and Minardi (2014) study warm glow. Their model is based on an interesting

idea of relating warm glow to the freedom to be selfish. In Evren and Minardi’s (2014) main

result, their primitive preferences are different from ours: they focus a preference over sets of

Pareto undominated allocations. Their model is general enough to allow for violations of IIA.

6Neilson (2009) also proposed a model of shame. Neilson’s (2009) model is not axiomatic.
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On the other hand, due to this generality, their representation lacks uniqueness properties.

Feddersen and Sandroni (2009) also provide an axiomatic model of warm glow. Their

approach is different from the other axiomatic papers including ours: They study a decision

maker’s choice function and an aspiration function that captures the decision maker’s nor-

mative concerns. One advantage of their approach is that they dispense with ex-ante choices

of sets. However, they need the aspiration functions instead.

Yagasaki (2013) provides an axiomatic model of pride and shame. As primitives of his

model, Yagasaki (2013) uses a function, which captures reference behavior, in addition to

preference relations over sets. In his model, the decision maker may feel shame and pride by

comparing his behavior and the reference behavior.

Finally, we mention two nonaxiomatic papers. Andreoni (1989, 1990) has proposed the

celebrated model of warm glow. By using the model, Andreoni (1989, 1990) has obtained

conditions that capture the partial crowding out, although the conditions are not easy to

interpret. In Andreoni’s (1989, 1990) model of warm glow, the decision maker can obtain

positive utility by his donation even if his donation is private to the other agents and does

not improve the welfare of the other agents. Hence, donations captured by Andreoni’s (1989,

1990) model are essentially different from donations captured by the GU model.

Dufwenberg, Heidhues, Kirchsteiger, Riedel, and Sobel (2011) have studied menu-dependent

other-regarding preferences. Their purpose is to analyze competitive market outcomes in

economies where agents have such preferences. They proposed a general utility function

that depends on the budge sets (opportunities, in their terminology), although they do not

provide an axiomatization.

4 Model

Remember that the decision maker is denoted by 1 and the finite set of other agents is

denoted by S. Hence, I ≡ {1} ∪ S is the set of all agents. Let Z be a finite set. A lottery

is a probability distribution over Z. We denote the set of lotteries by ∆(Z). For simplicity,
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we assume that a payoff for each agent is a lottery. Hence, the set of allocations is (∆(Z))I .

Note that outcomes of lotteries are not correlated across agents. We denote the set of all

nonempty closed subsets of (∆(Z))I by A . An element of A is called a set.

The primitive of our model is a binary relation % on A that describes the decision

maker’s ex-ante private preference. We denote the asymmetric and symmetric parts of % by

≻ and ∼, respectively. We endow A with the topology generated by the Hausdorff metric.7

We use the following notation. Sets are denoted by A,B, and C ∈ A . Allocations are

denoted by p, q, l, and r ∈ (∆(Z))I . Lotteries are denoted by p, q, l, and r ∈ ∆(Z). In

particular, lotteries for agent i ∈ I are denoted by pi, qi, li, and ri ∈ ∆(Z). We define convex

combinations of two sets, two allocations, and two lotteries in the usual manner.8 For a

singleton, we write p instead of {p}.

4.1 Axioms

Axiom (Standard): % is a nondegenerate, complete, transitive, and continuous binary

relation.9

Axiom (Independence): For all α ∈ [0, 1] and A,B,C ∈ A , A % B if and only if αA+ (1−

α)C % αB + (1− α)C.

As mentioned, the GU model does not capture inequality aversion. This is mainly because

of the independence axiom. (To incorporate inequality aversion, in Appendix C, we propose

an extension of the GU model by weakening the independence axiom.)

We define the decision maker’s risk preference %1 on ∆(Z) and social preference %S on

(∆(Z))S as follows:

7dh(A,B) = max{maxp∈A minq∈B d(p, q ),maxp∈B minq∈A d(p, q )}, where d is the Euclidean metric. (Re-
member that p and q are |Z|·|I| dimensional real-valued vectors. Hence, d is the Euclidean metric on R

|Z|·|I|.)
8For all pi, qi ∈ ∆(Z) and α ∈ [0, 1], αpi + (1 − α)qi is a lottery such that (αpi + (1 − α)qi)(z) =

αpi(z) + (1 − α)qi(z) for each z ∈ Z. For all p, q ∈ (∆(Z))I and α ∈ [0, 1], αp + (1 − α)q is an allocation
such that (αp + (1 − α)q ) = (αpi + (1 − α)qi)i∈I . For all A,B ∈ A and α ∈ [0, 1], αA + (1 − α)B =
{αp+ (1 − α)q|p ∈ A and q ∈ B}.

9Formally, the continuity is defined as follows: the sets {B ∈ A |B % A} and {B ∈ A |A % B} are closed
in the Hausdorff metric topology. % is nondegenerate if A ≻ B for some A,B ∈ A .
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Definition: (i) For all p1, q1 ∈ ∆(Z), p1 %1 q1 if (p1, lS) % (q1, lS) for some lS ∈ (∆(Z))S;

(ii) for all pS, qS ∈ (∆(Z))S, pS %S qS if (l1, pS) % (l1, qS) for some l1 ∈ ∆(Z).

The binary relation %1 captures the decision maker’s individual risk preference, and %S

captures his social preference (i.e., his preference on other agents’ allocations), which reflects

the decision maker’s belief about the other agents’ preferences.10 To see these interpretations,

note that in part (i) of the definition, the two allocations differ only with respect to the

decision maker’s allocations, so that his choice between the two allocations does not affect

other agents’ allocations. Hence, the decision maker would allow himself to choose one

allocation based solely on his individual preference.

Similarly, in part (ii) of the definition, the two allocations differ only with respect to

other agents’ allocations, so that the decision maker’s choice between the two allocations

does not affect his own allocation. Hence, the decision maker should choose one allocation

to maximize the anticipated welfare of other agents. It can be shown that the preferences

%1 and %S are well defined under the independence axiom.

We assume the following consistency condition between the two preferences.

Axiom (Consistency): For all pS, qS ∈ (∆(Z))S, if pi %1 qi for all i ∈ S, then pS %S qS.

Moreover, if pi %1 qi for all i ∈ S and pi ≻1 qi for some i ∈ S, then pS ≻S qS.

The consistency condition means that if every other agents’ allocation is better in pS than

in qS according to the decision maker’s individual preference %1, then pS is better than qS

in his social preference %S. The decision maker uses his individual preference to evaluate

the other agents’ allocations because the decision maker here is not a social planner and

might not know the other agents’ preferences. This axiom implies that the decision maker

evaluates the other agents’ allocations (pi)i∈S by using his own utility function u.

The next axiom requires that % satisfy the standard Pareto condition.

Axiom (Pareto): For any p, q ∈ (∆(Z))I , if p1 %1 q1 and pS %S qS, then {p} % {q}.

Moreover if either p1 ≻1 q1 or pS ≻S qS, then {p} ≻ {q}.

10For each i ∈ {1, S}, we write the asymmetric and symmetric parts of %i by ≻i and ∼i, respectively.
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The next axiom, Dominance, says that the decision maker is indifferent to adding an

allocation that is dominated both in individual preference and in social preference.

Axiom (Dominance): For any set A ∈ A and p ∈ (∆(Z))I , if there exists q ∈ A such that

q1 %1 p1 and qS %S pS, then A ∼ A ∪ p.

This axiom means that if an allocation p is dominated both in the individual preference and

in his social preference, then the decision maker should not choose p from A∪ p. Moreover,

having the option to choose p does not cause the decision maker’s feeling of shame, pride,

and the temptation. Hence, the decision maker is indifferent between A and A ∪ p.

The next axiom is a weaker version of the axiom of Strategic Rationality. Kreps (1963)

defines Strategic Rationality as follows: A % B ⇒ A ∼ A ∪ B. Strategic Rationality

means that the decision maker has neither a preference for commitment nor a preference for

flexibility. Because of the shame of acting selfishly and the temptation of acting selfishly,

the decision maker can have a preference for commitment. On the other hand because of

the feeling of pride of acting altruistically he can have a preference for flexibility.

To introduce the weaker version of Strategic Rationality, we need the following definitions.

A similar definition appears in Kopylov (2012). Given a set A and any element p ∈ A, say

that p is individually optimal in A if p1 %1 q1 for all q ∈ A and that p is socially optimal in

A if pS %S qS for all q ∈ A. For any allocation p ∈ (∆(Z))I , define

A 1
p = {A ∈ A |p is individually optimal in A},

A S
p = {A ∈ A |p is socially optimal in A}.

For example, if A,B ∈ A 1
p (or A S

p ), then A and B share the same optimal element in %1

(or in %S respectively).

Axiom (Weak Strategic Rationality): For any p, q ∈ (∆(Z))I and A,B ∈ A 1
p ∩ A S

q ,

A % B ⇒ A ∼ A ∪ B.

15



This axiom assumes three things: (i) the decision maker feels shame of acting selfishly by

not choosing the socially optimal allocation; (ii) he feels temptation to choose the individually

optimal allocation; and (iii) he can feel the pride of acting altruistically by overcoming such

temptation. Consider two sets A and B that share the same socially optimal allocation

and the same individually optimal allocation. Then A and A ∪ B also share the same

socially optimal allocation and the same individually optimal allocation. Hence, under the

assumption, the decision maker’s utility or disutility caused by the shame, the temptation,

and the pride are the same in A, B, and A ∪ B. Therefore, the only one reason that the

decision maker could prefer A to B is that A contains the optimal allocation in his ex-post

preference. Consequently, the decision maker should be indifferent between A and A ∪ B

because he can select the same ex-post optimal allocation of A from both A and A ∪ B.

The last axiom captures shame of acting selfishly: the decision maker feels shame when

his ex-post choice is judged inferior by the social preference %S . Hence, the decision maker

might have a preference for commitment in order to exclude the socially superior allocation

from his choice set as follows:

Axiom (Shame of Acting Selfishly): For any p, q, r ∈ (∆(Z))I ,



















(i) qS ≻S pS

(ii) r1 ≻1 p1

(iii) {p, q, r} ≻ {q, r}











⇒ {p} % {p, q}.

By (i), q is better than p in the social preference (i.e., qS ≻S pS). On the other hand, (ii)

and (iii) imply that p is better than q in the ex-post preference. To see this, note that by

(ii), p is not individually optimal (i.e., r1 ≻1 p1). Since even a purely selfish agent, who

maximizes %1, would not choose p, the act of not choosing p cannot reveal the decision

maker’s altruism. Thus, the decision maker will not experience any feeling of pride from

having (but not exercising) the option to choose p. Therefore, the only one reason that

the decision maker could prefer {p, q, r} to {q, r} as in (iii), is that he prefers to choose p
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ex-post.

Hence, the decision maker will choose socially inferior allocation p from {p, q} at the

ex-post public stage, which may cause shame of acting selfishly. Consequently, the decision

maker would prefer not to have the option to choose q (i.e., {p} % {p, q}) at the ex-ante

private stage.

4.2 Representation Theorem

Theorem: The following statements are equivalent:

(a) % satisfies Standard, Independence, Consistency, Pareto, Dominance, Weak Strategic

Rationality, and Shame of Acting Selfishly.

(b) There exist a nonconstant von Neumann-Morgenstern function u on ∆(Z) and real num-

bers (α, β1, βS) such that % is represented by

V (A) = max
p∈A

[

∑

i∈I

αiu(pi) + β1max
q∈A

α1(u(q1)− u(p1))− βS max
r∈A

(
∑

i∈S

αiu(ri)−
∑

i∈S

αiu(pi))
]

, (4)

where α1 > 0,
∑

i∈S αi = 1, β1 < 1, and βS ≥ 0.

By the definitions of %1 and %S, the theorem trivially implies that %1 and %S are

represented by u and
∑

i∈S αiu, respectively.

In the rest of the section, we provide an intuition for the proof of sufficiency. By In-

dependence, we show that there exist a von Neumann-Morgenstern utility function u on

∆(Z) and positive numbers {αi}i∈S such that (i) u represents %1 on ∆(Z) and (ii)
∑

i∈S αiu

represents %S and
∑

i∈S αi = 1. For any set A of allocations, we consider a set of utilities of

allocations in A. Formally, for all A ∈ A , define u(A) = {(u(p1),
∑

i∈S αiu(pi)) ∈ R
2|p ∈ A}

and A ∗ = {u(A)|A ∈ A }. Define

A∗ %∗ B∗ if A % B,
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where u(A) = A∗ and u(B) = B∗. By mainly using Dominance, we can show that %∗ is well

defined (i.e., if A∗ = B∗, then A ∼ B). It is easy to translate the axioms on % to axioms on

%∗.

Then, we apply Kopylov (2009, Theorem 2.1) to obtain a linear representation for %∗.

Because of the linearity of the model, we can obtain a function µ : R → R such that V ∗(A∗) =
∑

λ∈R

(

maxu∈A∗ λu1+(1−λ)uS

)

µ(λ) represents %∗. Moreover, supp(µ) ≡ {λ ∈ R|µ(λ) 6= 0}

is finite.

To obtain the GU model, we need to show that (i) µ(1) 6= 0, (ii) µ(0) < 0, (iii) µ(λ∗) > 0

for some λ∗ ∈ (0, 1), and (iv) µ(λ) is zero for all of the other λ ∈ R. In other words, to obtain

the GU model, unlike the other additive models such as Gul and Pesendorfer (2001) and

Kopylov (2012), it is not enough to know the number of the elements of {λ ∈ R|µ(λ) > 0}

and {λ ∈ R|µ(λ) < 0}. To obtain the GU model, it is crucial to identify the elements of

{λ ∈ R|µ(λ) > 0} and {λ ∈ R|µ(λ) < 0}.

For this purpose, fix ε < 1
2
and for all λ ∈ R, define

u∗
1(λ) =

1

2
+

ελ

‖(λ, 1− λ)‖
, u∗

S(λ) =
1

2
+

ε(1− λ)

‖(λ, 1− λ)‖
, and u∗(λ) = (u∗

1(λ), u
∗
S(λ)).

Then u∗(λ) is on the boundary of Bε(
1
2
, 1
2
) (i.e., the closed ball with radius ε centered at

(1
2
, 1
2
)). We can show that for all λ, λ′ ∈ R such that λ 6= λ′, λu∗

1(λ) + (1 − λ)u∗
S(λ) >

λu∗
1(λ

′) + (1 − λ)u∗
S(λ

′). To put it simply, for any λ ∈ R, u∗(λ) ≡ (u1(λ), uS(λ)) is unique

maximizer of λu1 + (1− λ)uS among the sets {u∗(λ′)|λ′ ∈ R} of utility pairs.

By using this property of u∗, we can construct menus of utilities by which we can identify

the sign of µ on any λ ∈ R. To see this fix λ ∈ R. Define A∗ = {u∗(λ′)|λ′ ∈ supp(µ)}.

Then, it must hold that A∗ ≻∗ A∗ \ {u∗(λ)} if and only if µ(λ) > 0.11 Based on this

idea, by using Dominance and Weak Strategic Rationality, we can show the aforementioned

properties (i.e., (i)–(iv)). Consequently, there exists λ∗ ∈ (0, 1) such that µ(λ∗) > 0 and

V ∗(A∗) = µ(1)maxu∈A∗ u1 + µ(λ∗)maxu∈A∗(λ∗u1 + (1− λ∗)uS) + µ(0)maxu∈A∗ uS. By using

11Because supp(µ) is finite, it can be shown that A∗ \ {u∗(λ′)} ∈ A ∗.
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Shame of Acting Selfishly, we can show that µ(0) ≤ 0.

By defining α1, β1, and βS based on µ, we obtain V ∗(A∗) = maxu∈A∗

(

(1 − β1)α1u1 +

(1+ βS)uS

)

+ β1α1maxu∈A∗ u1 − βS maxu∈A∗ uS.
12 Finally, for all A ∈ A , we define V (A) =

V ∗(A∗). Then, A % B ⇔ A∗ %∗ B∗ ⇔ V ∗(A∗) ≥ V ∗(B∗) ⇔ V (A) ≥ V (B). Hence, V

represents %. By arranging the terms and substituting u1 = u(p1) and uS =
∑

i∈S αiu(pi),

we obtain the GU model.

4.3 Uniqueness of Parameters

In the GU model, the parameters α and β are unique.

Proposition 1 If two GU models with (u,α,β) and (u′,α′,β′) represent the same %, then

β1 = β ′
1, βS = β ′

S, αi = α′
i for all i ∈ I, and there exist real numbers a, b such that a > 0

and u = au′ + b.

On the other hand, in the models of Gul and Pesendorfer (2001), Dillenberger and Sad-

owski (2012), and Evren and Minardi (2014), parameters capturing the temptation, shame,

and pride are not uniquely identified. As mentioned, the improved identification in the GU

model comes from its linear structure. At the same time, the linear structure makes the GU

model restrictive. In Section 5.2, we discuss this issue in detail.

5 Axiomatizations of Special Cases

In Section 5.1, we provide axiomatizations of the special cases of GU models with β1 = 0

and βS = 0. In Section 5.2, we discuss the relationship between the special cases and Gul

and Pesendorfer (2001), Dillenberger and Sadowski (2012), and Evren and Minardi (2014).

12α1 = µ(λ∗)λ∗ + µ(1), β1 = µ(1)
µ(λ∗)λ∗+µ(1) , and βS = −µ(0).
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5.1 Special Cases with β1 = 0 and βS = 0

In this section, we provide axiomatizations of two special cases of GU models. Each of

them is a special cases of either Gul and Pesendorfer (2001), Dillenberger and Sadowski

(2012), or Evren and Minardi (2014). Both models are characterized by stronger versions

of Weak Strategic Rationality. Remember that Weak Strategic Rationality is defined as

follows: for any p, q ∈ (∆(Z))I and A,B ∈ A 1
p ∩ A S

q , if A % B, then A ∼ A ∪ B.

Remember that if A,B ∈ A
S
p (or A

1
p ), then A and B share the same optimal element in %S

(or in %1 respectively).

To obtain the special case of the GU model in which β1 = 0, we strengthen Weak Strategic

Rationality as follows:

Axiom (Weak Strategic Rationality I): For any p, q ∈ (∆(Z))I and A,B ∈ A S
p ,

A % B ⇒ A ∼ A ∪ B.

This axiom assumes that the decision maker feels shame of acting selfishly by not choosing

the socially optimal allocation. Consider two sets A and B that share the same socially

optimal allocation. Then, A and A ∪ B also share the same socially optimal allocation.

Hence, under the assumption, the decision maker’s disutility caused by shame are the same

in A, B, and A ∪B. Therefore, the only one reason that the decision maker could prefer A

to B is that A contains the optimal allocation in his ex-post preference. Consequently, the

decision maker should be indifferent between A and A ∪ B because he can select the same

ex-post optimal element of A from both A and A ∪ B.

Corollary 1 The following statements (a) and (b) are equivalent:

(a) % satisfies Standard, Independence, Consistency, Pareto, Dominance, and Weak Strate-

gic Rationality I, and Shame of Acting Selfishly.

(b) There exist a GU model (u,α, (β1, βS)) with β1 = 0 that represents %.

Moreover,if two GU models with (u,α, (0, βS)) and (u′,α′, (0, β ′
S)) represent the same %,

20



then βS = β ′
S, αi = α′

i for all i ∈ I, and there exist real numbers a, b such that a > 0 and

u = au′ + b.

In contrast to Theorem, in Corollary 1 we impose Weak Strategic Rationality I, instead

of Weak Strategic Rationality.

In the following, we provide a characterization of the other special case of GU model

in which βS = 0. For this purpose, we need to strengthen Weak Strategic Rationality as

follows:

Axiom (Weak Strategic Rationality II): For any p, q ∈ (∆(Z))I and A,B ∈ A 1
p ,

A % B ⇒ A ∼ A ∪ B.

Weak Strategic Rationality II is different from Weak Strategic Rationality I only in one

point. In Weak Strategic Rationality II, we require A,B ∈ A 1
p , not A,B ∈ A S

p . This is

because in the special case of the GU model in which βS = 0, what matters to the decision

maker is the individually optimal allocations, not the socially optimal allocations.

Weak Strategic Rationality II assumes that (i) the decision maker feels temptation to

choose the individually optimal allocation; and (ii) he can feel the pride of acting altruistically

by overcoming such temptation.

Instead of Shame of Acting Selfishly, we need a stronger version of the axiom:

Axiom (No Shame of Acting Selfishly): For any p, q, r ∈ (∆(Z))I ,



















(i) qS ≻S pS

(ii) r1 ≻1 p1

(iii) {p, q, r} ≻ {q, r}











⇒ {p} ∼ {p, q}.

As explained, the condition (i), (ii), and (iii) ensure that the decision maker would

choose p ex-post but p is socially inferior to q. Hence, if the decision maker anticipates the

feeling of shame by not choosing q, then he would prefer not to have the option to choose q
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(i.e., {p} ≻ {p, q}) at the ex-ante private stage. If the decision maker does not anticipate

any feeling of shame, then he should be indifferent to have the option to choose q (i.e.,

{p} ∼ {p, q}).

Corollary 2 The following statements (a) and (b) are equivalent:

(a) % satisfies Standard, Independence, Consistency, Pareto, Dominance, Weak Strategic

Rationality II, and No Shame of Acting Selfishly.

(b) There exist a GU model (u,α, (β1, βS)) with βS = 0 that represents %.

Moreover, if two GU models with (u,α, (β1, 0)) and (u′,α′, (β ′
1, 0)) represent the same %,

then β1 = β ′
1, αi = α′

i for all i ∈ I, and there exist real numbers a, b such that a > 0 and

u = au′ + b.

5.2 Comparison with Dillenberger and Sadowski (2012), Evren

and Minardi (2014), and Gul and Pesendorfer (2001)

In this section, we compare the two special cases of the GU model and Dillenberger and

Sadowski (2012), Evren and Minardi (2014), and Gul and Pesendorfer (2001).13 The GU

model with β1 = 0 is

V (A) = max
p∈A

[

∑

i∈I

αiu(pi)− βS max
r∈A

(
∑

i∈S

αiu(ri)−
∑

i∈S

αiu(pi))
]

. (5)

In the model of Dillenberger and Sadowski (2012), the primitive preferences are defined

on the sets of allocations of monetary payoffs.

Dillenberger and Sadowski (2012) derive fairness preferences ≻f from their primitive

preferences % as follows: x ≻f y if there exists a set A such that y ∈ A and A ≻ A ∪ x.

Then, they impose axioms on % as well as on ≻f to axiomatize the following model:

VDS(A) = max
x∈A

[

v(x)− g
(

φ(x),max
y∈A

φ(y)
)

]

, (6)

13I really appreciate an associate editor who gave us insightful comments on the comparison.
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where φ represents ≻f and g captures the disutility of shame. The value of g depends on

the social utility φ(x) of the agent’s choice x and the optimal social utility maxy∈A φ(y).

To compare (5) and (6), assume that outcomes are monetary payoffs in (5). Then, (5)

is a special case of (6) in which v =
∑

i∈I αiu, g(a, b) = βS(a − b), and φ =
∑

i∈S αiu. The

linearity of g results from Independence. In (6), g and φ are not uniquely identified. While

in (5), α and βS are uniquely identified. This stronger uniqueness property comes from the

linearity of g, which, at the same time, makes (5) incompatible with violations of IIA.

The additional structure that φ =
∑

i∈S αiu comes mainly from Weak Strategic Ratio-

nality I and Shame of Acting Selfishly. Weak Strategic Rationality I implies that if x ≻f y,

then xS ≻S yS. To see this suppose that not xS ≻S yS but x ≻f y. Then there exists A ∈ A

such that y ∈ A and A ≻ A ∪ x. Since not xS ≻S yS, we have A,A ∪ x ∈ A S
z for some

z ∈ A. Then by Weak Strategic Rationality I, we obtain A ∼ A∪x, which is a contradiction.

By using Shame of Acting Selfishly and other axioms, it can be shown that if xS ≻S yS,

then x ≻f y. Hence, we obtain xS ≻S yS if and only if x ≻f y. Since ≻S is represented by
∑

i∈S αiu and ≻f is represented by φ, we obtain φ =
∑

i∈S αiu under a normalization.

Next we discuss the other special of the GU model with βS = 0:

V (A) = max
p∈A

[

∑

i∈I

αiu(pi) + β1max
q∈A

α1(u(q1)− u(p1))
]

. (7)

When β1 > 0, the second term captures pride and when β1 < 0, the second term captures

the temptation to act selfishly. In the following, we discuss the relationship between (7) and

Evren and Minardi (2014) as well as Gul and Pesendorfer (2001).

In the model of Evren and Minardi (2014), the primitive preferences are defined on the

sets of allocations of monetary payoffs. Evren and Minardi (2014) have axiomatized the

following model:

VEM(A) = max
x∈A

U
(

x,max
y∈A

y1 − x1

)

, (8)
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where the first argument captures the evaluation of the allocation x and the second argument

captures the difference between the most selfish allocation and the actual choice x1.

To compare (7) and (8), assume that outcomes are monetary payoffs in (7). If β1 > 0 and

u is linear (i.e., u(xi) = xi), (7) is a special case of (8) in which U(x, d) = α1x1+α2x2+β1d.

This linearity comes from again Independence. In (8), U is not uniquely identified. While

in (5), α and β1 are uniquely identified due to the the linearity of U , which makes (7)

incompatible with violations of IIA.

It can be shown that Weak Strategic Rationality II and the completeness of the pref-

erences imply one of the key axioms in Evren and Minardi (2014), Weak Instrumentalism.

That axiom is defined as follows: Let A,B,C ∈ A and suppose that C = A ∪ B. If there

exists a y ∈ A ∩B such that y1 ≥ x1 for every x ∈ C, then C ∼ A or C ∼ B.14

Gul and Pesendorfer’s (2001) primitive preferences are defined on the sets of lotteries,

not allocations of lotteries. In the following, in order to compare Gul and Pesendorfer’s

(2001) model and (7), we discuss the extended model of Gul and Pesendorfer (2001), in

which preferences are defined on the set of allocations of lotteries. By using several axioms,

including Independence, Gul and Pesendorfer (2001) obtain the following model:

VGP (A) = max
p∈A

[

w(p) + v(p)−max
q∈A

v(q)
]

. (9)

If β1 = −1, (7) is a special case of (9) in which w(p) =
∑

i∈S αiu(pi) and v(p) = α1u(p1). In

Gul and Pesendorfer (2001), w and v are unique up to positive affine transformation. In the

GU model, u is unique up to positive affine transformation and α and β1 are unique. The

additional structure that w(p) =
∑

i∈S αiu(pi) and v(p) = α1u(p1) mainly comes from Weak

Strategic Rationality II because the axiom implies that the temptation utility is the selfish

utility (i.e., v = α1u). This additional structure together with the richer domain in turn

makes it possible for us to uniquely identify the parameters (i.e., α, β1) in the GU model.

14To see this note that if y ∈ A ∩ B such that y1 ≥ x1 for every x ∈ C, then we obtain A,B ∈ A 1
y .

Therefore, by Weak Strategic Rationality II, if A % B then A ∼ C; and if B % A then B ∼ C. Since % is
complete, A % B or B % A holds, hence C ∼ A or C ∼ B holds.
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6 Characterization of Parameters

Remember that in GU model, β1 can be positive or negative. If β1 is positive, then the

GU model captures the pride of acting altruistically; if β1 is negative, then the GU model

captures the temptation to act selfishly. In Section 6.1, we provide two axioms that identify

β1 ≤ 0 and β1 ≥ 0, respectively. In Section 6.2, we provide comparative statics on α1, β1,

and βS.

6.1 Pride and Temptation

The next axiom captures a decision maker’s temptation to act selfishly (i.e., the temptation

to maximize his own allocation). To minimize the cost of self-control, the decision maker

might prefer to commit a smaller set that does not contain an allocation that he will not

choose ex-post but that is superior (i.e., tempting) in his individual preference. We formalize

the axiom as follows:

Axiom (Temptation to Act Selfishly): For any p, q ∈ (∆(Z))I ,



















(i) q1 ≻1 p1

(ii) {p, q} ≻ {q}

(iii) pS ≻S qS











⇒ {p} % {p, q}.

By (i), q is better than p in the individual preference (i.e., q1 ≻1 p1). Moreover, (i) and

(ii) imply that p is better than q in the ex-post preference. To see this, note that even a

purely selfish agent, who maximizes %1, would not choose p. Hence, the act of not choosing

p cannot reveal the decision maker’s altruism. Thus, the decision maker will not experience

any feeling of pride from having (but not exercising) the option to choose p. Therefore,

the only one reason that the decision maker could prefer {p, q} to {q} as in (ii), is that he

prefers to choose p ex-post.

Moreover, by (iii), p is better than q in the social preference (i.e., pS ≻S qS). Thus the
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decision maker does not feel the shame of acting selfishly when he chooses p from {p, q}.

Hence, the decision maker prefers {p} to {p, q} only because of the cost of self-control of

not choosing the individually optimal allocation (i.e., q) from {p, q}.

In contrast, by not choosing such selfish allocations, a decision maker might feel pride in

acting altruistically. Hence, such a decision maker might prefer to have (but not exercise)

the option to choose the selfish allocations. This observation can be formalized as follows:

Axiom (Pride in Acting Altruistically): For any p, q ∈ (∆(Z))I ,



















(i) q1 ≻1 p1

(ii) {p, q} ≻ {q}

(iii) pS ≻S qS











⇒ {p, q} % {p}.

Proposition 2 Suppose that % is represented by the GU model with (u,α,β).

(i) % exhibits Temptation to Act Selfishly if and only if β1 ≤ 0,

(ii) % exhibits Pride in Acting Altruistically if and only if β1 ≥ 0.

6.2 Comparative Statics

By exploiting the strong uniqueness of the GU model, we can show that the value of each

parameter captures the degree of each phenomenon: α1 captures the level of selfishness (i.e.,

1/α1 captures the level of altruism). In contrast, β1 and βS capture the levels of pride seeking

(temptation aversion) and shame aversion, respectively.

Definition: For any preferences %X and %Y on A such that %X
i =%Y

i for each i ∈ {1, S},

%X is more altruistic than %Y if the following is true: for any p, q ∈ (∆(Z))I such that

pS ≻i
S qS for each i ∈ {X, Y },

p %Yq ⇒ p %Xq.

Note that in the definition above p is superior to q in the social preference (i.e., pS ≻i
S qS).

Hence, if an agent (i.e., agent Y ) prefers p to q, then a more altruistic agent (i.e., agent X)
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also should prefer p to q.

Proposition 3 Suppose %X and %Y are represented respectively by two GU models with

(u,αX,βX) and (u,αY ,βY ) such that αX
S = αY

S .
15 Then, X is more altruistic than Y if and

only if αX
1 ≤ αY

1 .

Next, we investigate comparative statics on β1.

Definition: For preferences %X and %Y on A such that %X and %Y coincide on (∆(Z))I .

%X is more pride-seeking (less temptation-averse) than %Y , if the following is true: for any

p, q ∈ (∆(Z))I and r ∈ ∆(Z) such that (i) q1 ≻j
1 p1, (ii) {p, q} ≻j {q}, and (iii) pS ≻j

S qS

for each j ∈ {X, Y },

{p, q } %Y {(r)i∈I} ⇒ {p, q } %X {(r)i∈I}.

As in the axiom of Pride of Acting Altruistically, the conditions (i), (ii), and (iii) mean

that p is ex-post superior to q; however, q is superior in the individual preference (i.e.,

q1 ≻
j
1 p1). Hence, by not choosing the selfish allocation q, an agent might feel pride in acting

altruistically. On the other hand, a singleton set {(r)i∈I} would not cause any psychological

effects. Therefore, if an agent (i.e., agent Y ) prefers {p, q } to a singleton set {(r)i∈I}, then

a more pride seeking (or a less temptation-averse) agent (i.e., agent X) also should prefer

{p, q } to {(r)i∈I}.

Next, we investigate comparative statics on βS.

Definition: For preferences %X and %Y on A such that %X and %Y coincide on (∆(Z))I .

%X is more shame-averse than %Y , if the following is true: for any p, q, r ∈ (∆(Z))I and

l ∈ ∆(Z) such that (i) qS ≻j
S pS, (ii) r1 ≻j

1 p1, and (iii) {p, q, r} ≻j {q, r} for each

j ∈ {X, Y },

{(l)i∈I} %Y {p, q } ⇒ {(l)i∈I } %X {p, q }.

As in the axiom of Shame of Acting Selfishly, the conditions (i), (ii), and (iii) mean that

p is ex-post superior to q; however, q is socially superior to p (i.e., qS ≻j
S pS). Hence, the

15Since %X
i =%Y

i for all i ∈ {1, S}, there exist two GU models that share the same u and αS .
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agent would feel shame at choosing the socially inferior allocation p from {p, q}. Therefore,

if an agent (i.e., agent Y ) prefers a singleton set {(l)i∈I} to {p, q }, then a more shame averse

agent (i.e., agent X) also should prefer {(l)i∈I} to {p, q }.

Proposition 4 Suppose %X and %Y are represented respectively by two GU models with

(u,αX,βX) and (u,αY ,βY ) such that αX = αY .16 Then, the following statements hold:

(i) X is more pride-seeking (less temptation-averse) than Y if and only if βX
1 ≥ βY

1 .

(ii) X is more shame-averse than Y if and only if βX
S ≥ βY

S .

7 Ex-Post Choice

To model ex-post choice, we consider an additional primitive: for any set A ∈ A , let

C(A) ⊂ A be the non-empty set of all alternatives in A that the decision maker will choose

at the ex-post stage. Consider the following conditions. The first condition is the standard

condition proposed by Arrow (1959).

Axiom (Weak Axiom of Revealed Preference (WARP)): For all A,B ∈ A and p, q ∈

(∆(Z))I , if p ∈ C(A), q ∈ A, q ∈ C(B), and p ∈ B, then p ∈ C(B).

The second condition is also a standard continuity condition:

Axiom (Closed Graph): The set {(A,p)|A ∈ A ,p ∈ C(A)} is closed in A × (∆(Z))I .

The last condition is new, although a similar condition appears in Kopylov (2012).

Axiom (Consistency): For all p ∈ (∆(Z))I and A ∈ A ,

A ≻ A \ {p} ⇒ C(A) = {p} or A ∈ A
1
p .

This condition requires that the decision maker does not prefer to remove an element p from

a set A only if he plans to choose p ex-post or if p is individually optimal in A. In the latter

16Since %X and %Y coincide on (∆(Z))I , there exist two GU models that share the same u and α.
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case, he could desire to have (but not exercise) the option to choose p in order to feel pride

of acting altruistically.

7.1 Representation

Proposition 5 Let % be represented by the GU model with (u,α,β). Then a choice corre-

spondence C(·) satisfies WARP, Closed Graph, and Consistency if and only if for all A ∈ A

C(A) = argmax
p∈A

(1− β1)α1u(p1) + (1 + βS)
∑

i∈S

αiu(pi).

If C(·) satisfies WARP, Closed Graph, and Consistency, then we call C(·) an ex-post choice

correspondence associated with %. We define U(p) ≡ (1− β)α1u(p1) + (1+ βS)
∑

i∈S αiu(pi)

for all p ∈ (∆(Z))I . We call U(·) the ex-post utility function.

Note that since β1 < 1, the function U is monotonic in the decision maker’s utility u(p1)

and the social utility
∑

i∈S αiu(pi). Hence, the decision maker will never derive utility from

decreasing his own utility (or social utility) unless it increases social utility (or his own utility,

respectively).

7.2 Impure Altruism and Impure Selfishness

We say that a decision maker exhibits impure altruism if he acts to benefit others’ allocations

because of pride in acting altruistically and shame of acting selfishly. Suppose that such a

decision maker, at the ex-ante private stage, is indifferent between two allocations and that

one of the allocations is ranked superior to the other allocation by his social preference

%S. Then at the ex-post public stage, the decision maker should strictly prefer the socially

superior allocation because the pride and the shame are triggered by the publicness of the

choice.
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Axiom (Impure Altruism): For all p, q ∈ (∆(Z))I ,

{p} ∼ {q} and pS ≻S qS ⇒ C({p, q}) = {p}.

Note that C({p, q}) = {p} implies that q 6∈ C({p, q}). Hence, the decision maker

strictly prefers the socially superior allocation p at the ex-post public stage, even though he

is indifferent between p and q at the ex-ante private stage.

In contrast, we say that a decision maker exhibits impure selfishness if the temptation

to act selfishly motivates him to diverge from his ex-ante choices. Suppose that such a

decision maker, at the ex-ante stage, is indifferent between two allocations and that one of

the allocations is ranked superior to the other allocation by his individual preference %1.

Then, the decision maker should strictly prefer the selfish allocation at the ex-post stage.

Axiom (Impure Selfishness): For all p, q ∈ (∆(Z))I ,

{p} ∼ {q} and p1 ≻1 q1 ⇒ C({p, q}) = {p}.

Proposition 6 Suppose that % is represented by the GU model with (u,α,β) and C(·) is

the ex-post choice correspondence associated with %. Then, the following statements hold:

(i) % exhibits Impure Altruism if and only if βS > −β1.

(ii) % exhibits Impure Selfishness if and only if βS < −β1.

To understand the above result intuitively, remember that in the GU model, the ex-ante

choices between allocations, say, between p and q , are formalized as choices between the

singleton sets, such as {p} and {q }. So at the ex-ante stage, the ex-ante choices maximize

V ({p}) = α1u(p1) +
∑

i∈S αiu(pi). On the other hand, as shown in Proposition 5, the ex-

post choices maximize U(p) ≡ (1 − β1)α1u(p1) + (1 + βS)
∑

i∈S αiu(pi). By comparing the

two functions, we can see that the decision maker’s choices become more altruistic (i.e., the

relative weight on uS becomes higher) at the ex-post stage than they are at the ex-ante stage

if and only if βS > −β1.
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8 Consistency with Experiments

In this section, we show that the special case of the GU model with β1 = 0 is consistent with

recent experimental evidence on dictator games with an exit option. Before describing the

evidence, we clarify the meaning of public in the experiments. We call a dictator’s choice

public if there is common knowledge among the subjects that they are playing a dictator

game, even though a receiver does not know the identity of his paired dictator. Given the

common knowledge, the dictator may consider the receiver’s wish that the dictator behaves

altruistically.17 Hence, the dictator could feel pride in acting altruistically by living up to the

receiver’s wish or shame from acting selfishly by denying that wish. (Indeed, in Appendix D

we observe that anonymity does not change major tendencies of choices in some experiments.)

In the experiments conducted by Dana et al. (2006), Broberg et al. (2007), and Lazear

et al. (2012), the exit option could be costly (in other words, playing the dictator game

is subsidized) but the option ensured that receivers never knew the choice of exit. So, by

using the exit option, dictators could consume the whole endowment (minus the cost of exit,

if any) and leave nothing to receivers–without feeling shame of acting selfishly.18 In these

experiments, about one-third of subjects used the exit option privately, but when the same

subjects played a standard dictator game without the exit option, they donated a positive

amount to the receivers.

Moreover, the most recent experiments conducted by Lazear et al. (2012) found that

both lower-level and higher-level donors decide to play the game, while the medium-level

donors exit. Hence, screening is important to implement higher-level donations.19 Other

experiments such as Dana et al. (2006) found consistent evidence for the tendency. (See

Figure 3 for this tendency and Appendix D for details.)

17Given the common knowledge, the dictator knows that the receiver knows that a dictator determines
the receiver’s allocation. Hence, the dictator would consider the receiver’s wish.

18An experimenter observed the choice of exit. This is consistent with our model because the experimenter
is an outside observer (i.e., the subjects’ choices should not affect the experimenter’s welfare).

19Notice that the low level donations minus the cost of subsidy can be negative. So the participation of
low-level donors can be costly.
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Figure 3: The relationship between donations and the choice of exit in Lazear et al. (2012)
(left) and Dana et al. (2006) (right). (In the left figure, each point shows the choice of each
subject. The curve is a smooth approximation of the choices. The right figure shows the
percentage of subjects who existed, depending on the proportions of their donations.)

The theory of inequality aversion such as Fehr and Schmidt (1999) and Andreoni’s (1989,

1990) model of warm glow are inconsistent with this robust tendency to exit, not to mention

the above mentioned finding. In both theories, whether the dictator’s choice is private or

public does not make any difference in his utility. Moreover, by playing the dictator game,

the dictator can allocate the whole endowment and the subsidy arbitrarily between himself

and the receiver. Dillenberger and Sadowski (2012) can provide a sufficient condition for

the choice of exit: if the value of shame (i.e., the value of the function g) is large enough,

a subject should exit the game. In the following, by using the GU model, we will obtain

a necessary and sufficient condition for the choice of exit by using the unique parameters

(i.e., α and βS). Moreover, we show that our model can be consistent with the finding that

subjects whose donation is low or high tend to play the game, while subjects whose donation

is medium tend to exit the game.

To see that the GU model is consistent with the experimental evidence, note that the

singleton {(w, 0)} corresponds to exiting with endowment w; the set {(c, d) ∈ R
2
+|c + d ≤

w+τ} corresponds to playing the dictator game publicly with total endowment w+τ , where
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τ > 0 is the subsidy for playing the game (i.e., the cost of exiting the game). Hence, subjects

exit if and only if V ({(w, 0)}) ≥ V ({(c, d) ∈ R
2
+|c+ d ≤ w + τ}).20 With the GU model, we

can characterize the choice of exit completely as follows:

Proposition 7 Suppose that u′ > 0, u′′ < 0, u(0) = 0, u′(0) = +∞, α1 > 0, β1 = 0,

βS ≥ 0, and τ > 0. Let βS ≡ u(τ)/(u(w + τ) − u(τ)). There exist real-valued functions

α1, α1 on [βS,+∞) such that

(i) given βS < βS, then the decision maker plays the game;

(ii) given βS ≥ βS, then the decision maker exits the game if and only if α1 ∈ [α1(βS), α1(βS)];

the decision maker plays the game if and only if α1 < α1(βS) or α1(βS) < α1.

Moreover, α1(βS) = α1(βS), α1 is a strictly decreasing, and α1 is a strictly increasing. Hence,

α1(βS) < α1(βS) for all βS > βS.
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Figure 4: The optimal choice (i.e., exit or play) depending on the parameters (i.e., α1 and βS).
The lower solid curve corresponds to the graph of α1. The upper dotted curve corresponds
to the graph of α1. Donation increases in the south-east direction (i.e., as α1 decreases and
βS increases).

The proposition says that if βS is lower than the bound βS ≡ u(τ)/(u(w + τ) − u(τ)),

20For simplicity, we assume that the decision maker exits if he is indifferent.

33



then any subjects play the game because the shame which they anticipate in the game is

small.21 When βS is larger than the bound βS, (ii) implies that subjects whose α1 is low or

high tend to play the game, while subjects whose α1 is medium tend to exit the game. See

Figure 4 for an example.22

In the following, we discuss how this proposition captures the finding that subjects whose

donation is low or high tend to play the game, while subjects whose donation is medium

tend to exit the game. First, note that, given βS, donations increase as the index α1 of

selfishness decreases. Hence, given βS, the higher-level donors correspond to subjects whose

α1 is low; the medium-level donors correspond to subjects whose α1 is medium; and the

lower-level donors correspond to subjects whose α1 is high. So if βS and α1 are independently

distributed, the proposition captures the finding that both lower-level and higher-level donors

decide to play the game, while medium-level donors exit.

Given our purpose of separately capturing pure altruism and shame, there is no a prior

reason to assume a specific correlation. So, independence may be a sensible assumption.

Moreover, if we assume a specific correlation that βS is high when α1 is medium level, then

it is easy to describe the observed finding. One may think that α1 and βS would be negatively

correlated. That is, as a subject is more selfish (i.e., α1 is larger), he tends to be less shame-

averse (i.e., βS is smaller). However, such a negative correlation implies that lower donors

tend to play the game, which is incompatible with the observed finding. After all, how α1

and βS are distributed is an empirical question for future studies.

9 Application: Partial Crowding Out of Donations

In this section, we describe an empirical puzzle involving charitable donations: government

spending only partially crowds out consumers’ donations, even though standard consumer

theory predicts that the crowding out should be complete.

21Note that the since u′ > 0 and u′′ < 0, the bound βS increases as τ increases. This means that given
βS , as τ increases, subjects more likely to play the game.

22In the figure, we assume that u(x) = − exp(−x) + 1, β1 = 0, w = 2, and τ = .5.
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In his well-known paper, Andreoni (1989, 1990) has proposed a model of warm glow and

obtained conditions that capture the puzzle. However, Andreoni’s (1989, 1990) model is not

axiomatic. Moreover, it is not easy to interpret his conditions that capture the puzzle: the

conditions are imposed on derivatives of the first-order conditions of the decision maker’s

maximization problem. In the following, we obtain simpler conditions on α and β that

capture the puzzle.

We consider the following two-period decision problem. Period 1 consists of ex-ante

private and ex-post public stages. At the ex-ante private stage, the decision maker divides

his income e between the savings s for Period 2 and the budget w for the ex-post public

stage. At the ex-post public stage, the decision maker divides his budget w between his

donation d and his consumption c. At Period 2, the decision maker consumes the savings s

privately. The two-period framework is adopted here for simplicity; the crucial assumption

here is that the decision maker can consume some of his income privately.

e: income

s: saving

w: budget
d: donation

c: consumption

Ex-ante Ex-post

Figure 5: Decision Making in Period 1

We assume that the decision maker’s preferences are separable across the two periods and

that his utility at each period is represented by the GU model. Then, for any time-discount

factor δ ∈ (0, 1) and government spending g and tax τ , the decision maker’s problem at the

ex-ante stage of Period 1 is:

max
s,w

V ({(c, d+ g)|c+ d ≤ w − τ}) + δV ({(s, 0)}), (10)

subject to s+ w ≤ e.23 Given the optimal budget w∗(g, τ), the decision maker’s problem at

23Our results hold for any δ ∈ (0, 1). It is easy to axiomatize this extended representation (10) by

considering extended preferences %̂ over A × (∆(Z))I . We could axiomatize this extended representation by
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the ex-post stage of Period 1 is:

max
d,c

U(c, d+ g), (11)

subject to d + c ≤ w∗(g, τ) − τ . We denote the optimal donation (i.e., the solution d to

(11)) by d∗(g, τ). We say that the decision maker’s donation is crowded out completely if

d∗(g, τ) + g is constant in g and that his donation is crowded out partially if d∗(g, τ) + g is

strictly increasing in g.

Proposition 8 Suppose that (a) government spending is financed by tax (i.e., g = τ) and

(b) u′ > 0, u′′ < 0, u′′′ ≥ 0, u′(0) = +∞, and α1 ≥ 1. Then, the following holds:

(i) if the decision maker’s index (i.e., β1) for pride is larger than his index (i.e., βS) of

shame, then his donation is crowded out partially.

(ii) if he does not exhibit pride, shame, and temptation (i.e., β1 = 0 = βS), then his

donation is crowded out completely.

To see the result intuitively, note that V ({(c, d+ g)|c+ d ≤ w− τ}) = (1− β1)α1u(c
∗) +

(1+ βS)u(d
∗) + β1α1(u(w− τ)− u(c∗))− βS(u(w)− u(d∗)), where c∗ and d∗ are the optimal

consumption and the optimal donation respectively.24 Under the assumption that α1 ≥ 1, if

β1 > βS, then β1α1 > βS. Hence, the net effect β1α1(u(w − τ)− u(c∗))− βS(u(w)− u(d∗))

caused by pride and shame is increasing in w.25 Therefore, when τ increases, the decision

maker would increase w to compensate this increase of τ . This increase of w maintains the

level of donations, which implies that the crowding out will be only partial.

assuming that the conditional preference of %̂ on A satisfies our axioms in the theorem as well as standard
conditions, including the Independence axiom on A × (∆(Z))I .

24In the equation, the disutility of the shame is −βS(u(w+ g− τ)− u(d∗)), which is equal to −βS(u(w)−
u(d∗)) because g = τ .

25By the envelope theorem, the derivative of the difference is β1α1u
′(w− τ)− βSu

′(w). By the concavity,
u′(w − τ) > u′(w). Hence, the derivative of the difference is positive because β1α1 > βS .
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A Proof of Theorem

In this section, we prove the theorem. First, we show the sufficiency part of the theorem.

Fix % that satisfies the axioms in the theorem. The next lemma provides representations

for %1 and %S.

Lemma 1 There exist a von Neumann-Morgenstern utility function u1 on ∆(Z) and positive

numbers {αi}i∈S such that (i) u1 represents %1 on ∆(Z), (ii) there exist z, z ∈ Z such that

u1(z) = 1 ≥ u1(p) ≥ 0 = u1(z) for all p ∈ ∆(Z), and (iii) uS ≡
∑

i∈S αiu1 represents %S

and
∑

i∈S αi = 1.

Proof of Lemma 1: First, we show that %1 is well defined (i.e., if (l1, pS) % (r1, pS) for some

pS ∈ (∆(Z))S, then (l1, qS) % (r1, qS) for all qS ∈ (∆(Z))S). Suppose by way of contradiction

that (l1, pS) % (r1, pS) and (l1, qS) ≺ (r1, qS). By Independence, (l1,
1
2
pS + 1

2
qS) % (1

2
r1 +

1
2
l1,

1
2
pS + 1

2
qS) and (l1,

1
2
qS + 1

2
pS) ≺ (1

2
r1 +

1
2
l1,

1
2
qS + 1

2
pS). This is a contradiction. By the

same way, we can show that %S is well defined.

To show %1 satisfies Independence, fix p1, q1, l1 ∈ ∆(Z) and α ∈ [0, 1]. Then, for any

pS, qS ∈ ∆(Z), p1 %1 q1 ⇔ (p1, pS) % (q1, pS) ⇔ α(p1, pS) + (1−α)(l1, qS) % α(q1, pS) + (1−

α)(l1, qS) ⇔ αp1+(1−α)l1 %1 αq1+(1−α)l1. By the same way, we can show that %S satisfies

Independence. Then, by the standard argument with von Neumann-Morgenstern’s Theorem,

there exist mixture-linear utility functions u1 and ûS, which are unique up to positive affine

transformation. Then, (ii) follows from the finiteness of Z and a normalization. Finally,

by Consistency, it follows from Fishburn (1984) that there exist a positive numbers {αi}i∈S

and a real number γ such that ûS(pS) =
∑

i∈S αiu1(pi) + γ and
∑

i∈S αi = 1. By defining

uS = ûS − γ, we obtain (iii). �

The next lemma shows a stronger version of Dominance.

Lemma 2 For any set A,B ∈ A , if for any p ∈ B, there exists q ∈ A such that q1 %1 p1

and qS %S pS, then A ∼ A ∪ B.
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Proof of Lemma 2: Fix A,B ∈ A . Since ∆(Z) is separable, there exists a countable set

B′ = {p1,p2,p3, . . . } such that cl.B′ = B. Let B0 = ∅ and Bn = {p1, . . . ,pn}, so that

Bn ⊂ Bn+1 for all n and B′ = ∪∞
n=1Bn. Then, Bn → cl.B′ = B in the Hausdorff metric

topology.26 Since for any pn, there exists q ∈ A such that q1 %1 pn1 and qS %S pnS. Then,

by Dominance, A ∪ Bn ≡ (A ∪ Bn−1) ∪ pn ∼ A ∪ Bn−1. By transitivity, A ∪ Bn ∼ A for all

n ∈ N. By continuity, hence, A ∪ B ∼ A. �

For all A ∈ A , define u(A) = {(u1(p1),
∑

i∈S αiu(pi)) ∈ R
2|p ≡ (p1, pS) ∈ A} and A ∗ =

{u(A)|A ∈ A }. Since A ∈ A is closed, u(A) is also closed by the continuity of u1 and uS.

Since u1(∆(Z)) = [0, 1] and uS((∆(Z))S) = [0, 1], A ∗ is a set of compact subsets of [0, 1]2. We

endow A ∗ with the Hausdorff metric dh(A
∗, B∗) = max{maxu∈A∗ minv∈B∗ d(u, v ),maxu∈B∗

minv∈A∗ d(u, v )}, where d is the Euclidean metric. We define a mixture on A ∗ as follows: for

all A∗, B∗ ∈ A ∗ and α ∈ [0, 1], αA∗+ (1−α)B∗ = {u ∈ R
2|u = αv+ (1−α)w for some v ∈

A∗,w ∈ B∗}. Define %∗ on A
∗ as follows:

A∗ %∗ B∗ if A % B,

where u(A) = A∗ and u(B) = B∗. Define ≻∗ and ∼∗ as the asymmetric and symmetric

parts of %∗, respectively.

Lemma 2 shows that %∗ is well defined in the following sense:

Lemma 3 If A∗ = B∗, then A ∼ B.

Proof of Lemma 3: If u(A) = u(B), then for any p ∈ A there exists q ∈ B such that

q1 ∼1 p1 and qS ∼S pS. Therefore, Lemma 2 shows that A ∼ A ∪ B. In the same way, we

can show B ∼ A ∪B. Hence, A ∼ B. �

Next lemma shows that %∗ satisfies the following axioms.

Axiom (Independence*): For all α ∈ [0, 1] and A∗, B∗, C∗ ∈ A ∗, A∗ %∗ B∗ if and only if

αA∗ + (1− α)C∗ %∗ αB∗ + (1− α)C∗.

26cl.A denotes the closure of A for all A ∈ A .
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Axiom: (Pareto*) For any u, v ∈ [0, 1]2, if u1 ≥ v1 and uS ≥ vS, then u %∗ v. Moreover if

u1 > v1 or uS > vS, then u ≻∗ v.

Axiom: (Dominance*) For any A ∈ A and u ∈ [0, 1]2, if there exists v ∈ A∗ such that

v1 ≥ u1 and vS ≥ uS, then A∗ ∼∗ A∗ ∪ {u}.

Axiom: (Weak Strategic Rationality*) If there exist u, v ∈ A∗ and u′, v′ ∈ B∗ such that for

all w ∈ A∗ ∪ B∗, u1 = u′
1 ≥ w1 and vS = v′S ≥ wS, then A∗ %∗ B∗ ⇒ A∗ ∪B∗ ∼∗ A∗.

Axiom: (Shame of Acting Selfishly*) If (i) vS > uS, (ii) w1 > u1, and (iii) {u, v,w} ≻∗

{v,w}, then {u} %∗ {u, v}.

Lemma 4 %∗ is a complete, transitive, and continuous binary relation that satisfies Inde-

pendence*, Pareto*, Dominance*, Weak Strategic Rationality*, and Shame of Acting Self-

ishly*.

Proof of Lemma 4: Remember that % is a complete and transitive binary relation that

satisfies Independence, Pareto, Dominance, Weak Strategic Rationality, and Shame of Acting

Selfishly. Hence, by the definition of %∗, %∗ also satisfies those properties. In the following,

we show that %∗ is continuous. Choose any A∗ ∈ A ∗ to show {B∗ ∈ A ∗|B∗ %∗ A∗} and

{B∗ ∈ A ∗|A∗ % B∗} are closed.

Let {B∗
n} be a sequence such that B∗

n %∗ A∗ and B∗
n → B∗ to show B∗ %∗ A∗. By

definition, there exists a sequence {Bn} such that u(Bn) = B∗
n and Bn % A. Since Bn ∈ A

and A is compact, there exists a convergent subsequence {B′
k} such that B′

k → B′. Since

B′
k % A for all k, then the continuity of % shows that B′ % A. Since u is continuous, then

u(B′
k) → u(B′). Since {u(B′

k)} is a subsequence of {B∗
n} and B∗

n → B∗, it must hold that

u(B′) = B∗. Since B′ % A, we obtain B∗ %∗ A∗. In the same way, we can show that

{B∗ ∈ A ∗|A∗ %∗ B∗} is closed. �

Now, we show a general representation for %∗.

Lemma 5 There exists a function µ : R → R such that V ∗(A∗) =
∑

λ∈R

(

maxu∈A∗ λu1 +

(1− λ)uS

)

µ(λ) represents %∗. Moreover, supp(µ) ≡ {λ ∈ R|µ(λ) 6= 0} is finite.
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Proof of Lemma 5:

Step 1: (i) There exist finite sets K and L of functions on [0, 1]2 such that %∗ is represented

by V ∗(A∗) =
∑

U∈K maxu∈A∗ U(u )−
∑

U∈L maxu∈A∗ U(u ), (ii) For any U ∈ K∪L, λ ∈ [0, 1],

and u, v ∈ [0, 1]2, U(λu + (1− λ)v) = λU(u) + (1− λ)U(v), (iii) For any U ∈ K ∪ L, there

exist no U ′ ∈ K ∪ L \ {U}, a > 0, and b ∈ R such that U = aU ′ + b.

Proof of Step 1: By Lemma 4, %∗ is a continuous, complete, and transitive relation that

satisfies Independence*. To show Step 1, by Kopylov (2009, Theorem 2.1), it suffices to

show that %∗ satisfies his Finiteness axiom, that is, for any sequence {A∗
n} of A ∗ there

exists a positive integer N such that
⋃N

n=1A
∗
n ∼∗

⋃N+1
n=1 A∗

n.
27 To show that %∗ satisfies

this axiom, choose any A∗
1, A

∗
2, A

∗
3, A

∗
4 ∈ A ∗. Let u∗ = argmaxu∈A∗

1
∪A∗

2
∪A∗

3
∪A∗

4
u1 and v∗ =

argmaxv∈A∗

1
∪A∗

2
∪A∗

3
∪A∗

4
vS. (Such u∗ and v∗ exist because each A∗

i is compact.) Without loss

of generality, assume u∗ ∈ A∗
1, v

∗ ∈ A∗
2, and A∗

1 ∪ A∗
2 ∪ A∗

3 %
∗ A∗

1 ∪ A∗
2 ∪ A∗

4. Since u∗ ∈ A∗
1

and v∗ ∈ A∗
2, Weak Strategic Rationality* shows that A∗

1 ∪ A∗
2 ∪ A∗

3 ∪ A∗
4 ∼∗ A∗

1 ∪ A∗
2 ∪ A∗

3.

So Finiteness is satisfied with N = 3. �

Normalize each U ∈ K ∪ L by adding a constant number so as to obtain U(0, 0) = 0.

Step 2: For all U ∈ K ∪ L, there exists (a1(U), aS(U)) ∈ R
2 such that U(u ) = a1(U)u1 +

aS(U)uS. Moreover, for any U, U ′ ∈ K ∪ L such that U 6= U ′, a1(U)
a1(U)+aS(U)

6= a1(U ′)
a1(U ′)+aS(U ′)

.

Proof of Step 2: For all U ∈ K ∪ L, define a1(U) = U(1, 0) and aS(U) = U(0, 1). Fix

u ≡ (u1, uS) ∈ [0, 1]2. Consider the case where u1 + uS ≥ 1. Then, 1
u1+uS

U(u1, uS) + (1 −

1
u1+uS

)U(0, 0) = U
(

u1

u1+uS
, uS

u1+uS

)

= u1

u1+uS
U(1, 0)+ uS

u1+uS
U(0, 1) = 1

u1+uS
(a1(U)u1+aS(U)uS).

Since U(0, 0) = 0, then U(u) = a1(U)u1 + aS(U)uS. The other case where u1 + uS ≤ 1 can

be proved in the same way. Step 1 (iii) shows that for any U, U ′ ∈ K ∪ L such that U 6= U ′,

a1(U)
a1(U)+aS (U)

6= a1(U ′)
a1(U ′)+aS(U ′)

. �

27Kopylov (2009, Theorem 2.1) shows that Step 1 holds if and only if %∗ is a continuous, complete, and
transitive relation that satisfies Independence and Finiteness.
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For all λ ∈ R define

µ(λ) =



















a1 + aS if λ = a1(U)
a1(U)+aS (U)

for some U ∈ K,

−(a1 + aS) if λ = a1(U)
a1(U)+aS(U)

for some U ∈ L,

0 otherwise.

Note that µ is well defined because for any U, U ′ ∈ K ∪ L such that U 6= U ′, a1(U)
a1(U)+aS (U)

6=

a1(U ′)
a1(U ′)+aS(U ′)

. Therefore, by Step 1 and Step 2, we establish Lemma 5. Moreover, since K

and L are finite, supp(µ) is finite. �

Fix ε < 1
2
. For all λ ∈ R, define

u∗
1(λ) =

1

2
+

ελ

‖(λ, 1− λ)‖
, u∗

S(λ) =
1

2
+

ε(1− λ)

‖(λ, 1− λ)‖
, and u∗(λ) = (u∗

1(λ), u
∗
S(λ)).

Then u∗(λ) is on the boundary of Bε(
1
2
, 1
2
) (i.e., the closed ball with radius ε centered at

(1
2
, 1
2
)). The next lemma is useful to characterize V .

Lemma 6 (i) For all λ, λ′ ∈ R such that λ 6= λ′, λu∗
1(λ) + (1 − λ)u∗

S(λ) > λu∗
1(λ

′) + (1 −

λ)u∗
S(λ

′). (ii) For all λ ∈ [0, 1], u∗
1(1) ≥ u∗

1(λ) and u∗
S(0) ≥ u∗

S(λ). (iii) If λ 6∈ [0, 1],

u∗
1(

|λ|
|λ|+|1−λ|

) ≥ u∗
1(λ) and u∗

S(
|λ|

|λ|+|1−λ|
) ≥ u∗

S(λ).

Proof of Lemma 6: To show (i), choose any u ∈ Bε(
1
2
, 1
2
) and any λ ∈ R. Then, λu∗

1(λ) +

(1−λ)u∗
S(λ) =

1
2
+ε‖(λ, 1−λ)‖ ≥ 1

2
+‖u−(1

2
, 1
2
)‖‖(λ, 1−λ)‖ ≥ 1

2
+ |(u−(1

2
, 1
2
)) ·(λ, 1−λ)| =

|λu1+(1−λ)uS| ≥ λu1+(1−λ)uS, where the first inequality holds because u ∈ Bε(
1
2
, 1
2
) and

the second inequality holds by Cauchy-Scharz’s inequality. The two inequalities hold with

equalities if and only if u− (1
2
, 1
2
) = ε

‖(λ,1−λ)‖
(λ, 1− λ), or u = u∗(λ). Since u∗(λ) = u∗(µ) if

and only if λ = µ, (i) holds. (ii) and (iii) follow from direct calculations.28 �

28(ii) holds because u∗
1(1) =

1
2 + ε ≥ u∗

1(λ) and u∗
S(0) =

1
2 + ε ≥ u∗

S(λ) for all λ ∈ R. To see (iii) holds,

consider the case where λ < 0. Then |λ|
|λ|+|1−λ| ∈ [0, 1]. Hence, u1(

|λ|
|λ|+|1−λ| ) ≥

1
2 > u1(λ). Moreover, by a

direct calculation, uS(
|λ|

|λ|+|1−λ| ) =
1
2 + ε|1−λ|

‖(λ,1−λ)‖ = uS(λ) because 1 − λ > 0. The other case where λ > 1

can be proved in the same way.
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Lemma 7 There exists λ∗ ∈ (0, 1) such that µ(λ∗) > 0 and V ∗(A∗) = µ(1)maxu∈A∗ u1 +

µ(λ∗)maxu∈A∗(λ∗u1 + (1− λ∗)uS) + µ(0)maxu∈A∗ uS.

Proof of Lemma 7: Given Lemma 5, it suffices to show the following: (i) For any λ 6∈ [0, 1],

then µ(λ) = 0; (ii) For any λ 6∈ {0, 1}, µ(λ) ≥ 0; (iii) There exists unique λ∗ ∈ (0, 1) such

that µ(λ∗) > 0.

To show (i), suppose by way of contradiction that there exists λ′ 6∈ [0, 1] such that µ(λ′) 6=

0. Define A∗ =
{

u∗(λ) ∈ R
2
∣

∣λ ∈
{

0, 1, |λ′|
|λ′|+|1−λ′|

}

∪ supp(µ) \ {λ′}
}

. Since supp(µ) is finite,

both A∗ and A∗∪u∗(λ′) are closed. Therefore, V ∗(A∗) and V ∗(A∗∪u∗(λ′)) are well defined.

Since u∗( |λ′|
|λ′|+|1−λ′|

) ∈ A∗, Lemma 6 (iii) and Dominance* show that A∗∼∗A∗ ∪ u∗(λ′), so

that V ∗(A∗) = V ∗(A∗ ∪ u∗(λ′)).

However, for all λ ∈
{

0, 1, |λ′|
|λ′|+|1−λ′|

}

∪supp(µ)\{λ′}, Lemma 6 (i) shows that maxu∈A∗∪u∗(λ′) λu1+

(1 − λ)uS = λu∗
1(λ) + (1 − λ)u∗

S(λ) = maxu∈A∗ λu1 + (1 − λ)uS. Moreover, by (i) again,

maxu∈A∗∪u∗(λ′) λ
′u1+(1−λ′)uS = λ′u∗

1(λ
′)+(1−λ′)u∗

S(λ
′) > maxu∈A∗ λ′

1u1+(1−λ′)uS. There-

fore, V ∗(A∗∪u∗(λ′))−V ∗(A∗) =
(

λ′u∗
1(λ

′)+(1−λ′)u∗
S(λ

′)−maxu∈A∗ λ′
1u1+(1−λ′)uS

)

µ(λ′) 6=

0 because µ(λ′) 6= 0. This is a contradiction. Hence, (i) holds.

To show (ii), suppose by way of contradiction that there exists ξ 6∈ {0, 1} such that

µ(ξ) < 0. Define A∗ = {u∗(λ)|λ ∈ {0, 1} ∪ supp(µ) \ {ξ}}. Since supp(µ) is finite, A∗ is

closed. Hence, A∗ ∈ A ∗. By Lemma 6 (i), V (A∗∪u∗(ξ))−V (A∗) =
(

maxu∈A∗∪u∗(ξ)(ξu1+(1−

ξ)uS)−maxu∈A∗(ξu1+(1−ξ)uS)
)

µ(ξ) < 0. Hence, A∗ ≻∗ A∗∪u∗(ξ). Since u∗(1),u∗(0) ∈ A∗,

it follows from Lemma 6 (ii) that u∗
1(1) ≥ w1 and u∗

S(0) ≥ wS for all w ∈ A∗ ∪ u∗(ξ). By

Weak Strategic Rationality*, we obtain A∗ ∼∗ A∗ ∪ A∗ ∪ u∗(ξ) = A∗ ∪ u∗(ξ), which is a

contradiction.

To show (iii), first we show that there exists at most one λ 6∈ {0, 1} such that µ(λ) > 0.

Suppose by way of contradiction that there exist distinct elements ξ, η 6∈ {0, 1} such that

µ(ξ) > 0 and µ(η) > 0. Define A∗ = {u∗(λ)|λ ∈ {0, 1}∪supp(µ)\{ξ}} and B∗ = {u∗(λ)|λ ∈

{0, 1} ∪ supp(µ) \ {η}}. Since supp(µ) is finite, A∗ and B∗ are closed. Hence, A∗, B∗ ∈ A ∗.

Note that u∗(1) ∈ A∗ ∩ B∗ and u∗(0) ∈ A∗ ∩ B∗. Hence, Lemma 6 (ii) and Weak Strategic
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Rationality* imply that if A∗ %∗ B∗, then A∗ ∪ B∗ ∼∗ A∗; and that if B∗ %∗ A∗, then

A∗ ∪ B∗ ∼∗ B∗. Since %∗ is a weak order, either A∗ ∪ B∗ ∼∗ A∗ or A∗ ∪ B∗ ∼∗ B∗

holds. However, by Lemma 6 (i), V (A∗ ∪ B∗) − V (B∗) =
(

maxu∈A∗∪B∗ ηu1 + (1 − η)uS −

maxu∈A∗(ηu1 + (1 − η)uS)
)

µ(η) > 0 and V (A∗ ∪ B∗) − V (A∗) =
(

maxu∈A∗∪B∗ ξu1 + (1 −

ξ)uS −maxu∈B∗(ξu1 + (1− ξ)uS)
)

µ(ξ) > 0. This is a contradiction.

Next we show that there exists at least one λ 6∈ {0, 1} such that µ(λ) > 0. Suppose not.

Then, by (i) and (ii), µ(λ) = 0 for all λ 6∈ {0, 1}. Therefore, V ∗(u ) = µ(1)u1 + µ(0)uS for

all u ∈ [0, 1]2. Since % satisfies Pareto*, it must hold that µ(1) > 0 and µ(0) > 0. However,

this representation contradicts with Shame of Acting Selfishly*. To see this note that if (i)

vS > uS, (ii) w1 > u1, and (iii) {u, v,w} ≻∗ {v,w}, then V ∗({u}) = µ(1)u1 + µ(0)uS <

µ(1)max{u1, v1}+ µ(0)vS = V ∗({u, v}). �

Lemma 8 µ(0) ≤ 0.

Proof of Lemma 8: Choose v,w ∈ [0, 1]2 such that w1 > v1 and vS > wS. Let u ∈ [0, 1]2

be such that w1 > u1 > v1 and vS > uS > wS. By making u1 and uS close enough to w1 and

vS respectively, we can obtain λ∗u1+(1−λ∗)uS > max{λ∗v1+(1−λ∗)vS, λ
∗w1+(1−λ∗)wS}

because λ∗ ∈ (0, 1). Since µ(λ∗) > 0, it follows that V ∗({u, v,w}) > V ∗({v,w}). Therefore,

Shame of Acting Selfishly* requires that V ∗({u}) ≥ V ∗({u, v}). Hence, 0 ≤ V ∗({u}) −

V ∗({u, v}) = µ(0)[uS − vS]. Since vS > uS, we obtain µ(0) ≤ 0. �

By Lemma 7, for all u ∈ [0, 1]2, V ∗(u ) = (µ(λ∗)λ∗ + µ(1))u1 + (µ(λ∗)(1− λ∗) + µ(0))uS.

Normalize µ so as to hold µ(λ∗)(1− λ∗) +µ(0) = 1. By Pareto*, µ(λ∗)λ∗+µ(1) > 0. Define

α1 = µ(λ∗)λ∗ + µ(1), β1 =
µ(1)

µ(λ∗)λ∗ + µ(1)
, and βS = −µ(0).

Then, α1 > 0. Since λ∗ ∈ (0, 1) and µ(λ∗) > 0, we obtain β1 < 1. Since µ(0) ≤ 0, we obtain,

βS ≥ 0. By the normalization and the definitions, µ(1) = β1α1, µ(λ∗)λ∗ = (µ(λ∗)λ∗ +

µ(1))
(

1− µ(1)
µ(λ∗)λ∗+µ(1)

)

= α1(1−β1), and µ(λ∗)(1−λ∗) = 1−µ(0) = 1+βS. Hence, by Lemma

7, we obtain V ∗(A∗) = maxu∈A∗

(

(1−β1)α1u1+(1+βS)uS

)

+β1α1maxu∈A∗ u1−βS maxu∈A∗ uS.
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For all A ∈ A , define V (A) = V ∗(A∗). Then, A % B ⇔ A∗ %∗ B∗ ⇔ V ∗(A∗) ≥

V ∗(B∗) ⇔ V (A) ≥ V (B). Hence, V represents %. By arranging the terms and substituting

u1 = u(p1) and uS =
∑

i∈S αiu(pi), we obtain the GU model.

Finally, we show the necessity. We show that the representation satisfies Weak Strategic

Rationality and Shame of Acting Selfishly. It is easy to see the necessity of the other axioms.

To show Weak Strategic Rationality, consider p, q ∈ (∆(Z))I and A,B ∈ A
1
p ∩ A

S
q

such that A % B. Then, 0 ≤ V (A) − V (B) = maxp′∈A U(p′) − maxp′∈B U(p′). Hence,

maxp′∈A U(p′) ≥ maxp′∈B U(p′), so that maxp′∈A∪B U(p′) = maxp′∈A U(p′). It follows that

V (A ∪B)− V (A) = maxp′∈A∪B U(p′)−maxp′∈A U(p′) = 0.

To show Shame of Acting Selfishly, suppose qS ≻S pS, r1 ≻1 p1, and {p, q, r} ≻ {q, r}.

Then, 0 < V ({p, q, r}) − V ({q, r}) = maxp′∈{p,q,r} U(p′) − maxp′∈{q,r} U(p′). It follows

that U(p) > U(q). Since qS ≻S pS, we have p1 ≻1 q1. Hence, V ({p}) − V ({p, q}) =

βS[
∑

i∈S αiu(qi)−
∑

i∈S αiu(pi)] ≥ 0, so that {p} % {p, q}.

B Proof of Corollaries and Propositions

In the following, for any p ∈ ∆(Z), we denote by (p)i∈S an allocation over the other agents

(i.e., over the set S) that yields p for each i ∈ S.

Proof of Corollary 1: Note that Weak Strategic Rationality I implies Weak Strategic

Rationality. So all of the axioms in Theorem are satisfied. Hence, we can show Lemma 1–8

in the proof of Theorem. So, there exists λ∗ ∈ (0, 1) such that µ(λ∗) > 0 and V ∗(A∗) =

µ(1)maxu∈A∗ u1+µ(λ∗)maxu∈A∗(λ∗u1+(1−λ∗)uS)+µ(0)maxu∈A∗ uS and µ(0) ≤ 0. Finally,

we show that µ(1) = 0. To see this note that choose v,w ∈ [0, 1]2 such that w1 > v1 and

vS > wS. Let u ∈ [0, 1]2 be such that w1 > u1 > v1 and vS > uS > wS. By making u1 and

uS close enough to w1 and vS respectively, we can obtain λ∗u1 + (1 − λ∗)uS > max{λ∗v1 +

(1 − λ∗)vS, λ
∗w1 + (1 − λ∗)wS} because λ∗ ∈ (0, 1). Then, V ∗({u, v}) − V ∗({v,w}) =

µ(1)u1+µ(λ∗)(λ∗u1+(1−λ∗)uS)+µ(0)vS −
[

µ(1)w1+µ(λ∗)max{λ∗v1+(1−λ∗)vS, λ
∗w1+

(1 − λ∗)wS} + µ(0)vS

]

= µ(1)(u1 − w1) + µ(λ∗)
(

λ∗u1 + (1 − λ∗)uS − max{λ∗v1 + (1 −
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λ∗)vS, λ
∗w1+(1−λ∗)wS}

)

. When u1 and uS are close enough to w1 and vS respectively, we

have V ∗({u, v})−V ∗({v,w}) > 0, so that {u, v} ≻ {v,w}. Since {u, v}, {v,w} ∈ A S
v , Weak

Strategic Rationality I shows that {u, v} ∼ {u, v,w}, so that V ∗({u, v}) = V ∗({u, v,w}).

Since w1 > v1, vS > wS, and λ∗u1+(1−λ∗)uS > max{λ∗v1+(1−λ∗)vS, λ
∗w1+(1−λ∗)wS},

we obtain V ∗({u, v,w}) − V ∗({u, v}) = µ(1)(w1 − v1), so that µ(1)(w1 − v1) = 0. Since

w1 − v1 > 0, it follows that µ(1) = 0.

Proof of Corollary 2: Note that Weak Strategic Rationality II implies Weak Strategic

Rationality. Hence, by using No Shame of Acting Selfishly, we can show Lemma 1–7 hold.

Therefore, there exists λ∗ ∈ (0, 1) such that µ(λ∗) > 0 and V ∗(A∗) = µ(1)maxu∈A∗ u1 +

µ(λ∗)maxu∈A∗(λ∗u1 + (1 − λ∗)uS) + µ(0)maxu∈A∗ uS. Finally, we show that µ(0) = 0. To

see this note that choose v,w ∈ [0, 1]2 such that w1 > v1 and vS > wS. Let u ∈ [0, 1]2 be

such that w1 > u1 > v1 and vS > uS > wS. By making u1 and uS close enough to w1 and vS

respectively, we can obtain λ∗u1 + (1− λ∗)uS > max{λ∗v1 + (1− λ∗)vS, λ
∗w1 + (1− λ∗)wS}

because λ∗ ∈ (0, 1). Then, V ∗({u,w})− V ∗({v,w}) = µ(1)w1 + µ(λ∗)(λ∗u1 + (1− λ∗)uS) +

µ(0)uS−
[

µ(1)w1+µ(λ∗)max{λ∗v1+(1−λ∗)vS, λ
∗w1+(1−λ∗)wS}+µ(0)vS

]

= µ(λ∗)
(

λ∗u1+

(1 − λ∗)uS − max{λ∗v1 + (1 − λ∗)vS, λ
∗w1 + (1 − λ∗)wS}

)

− µ(0)(vS − uS). When u1 and

uS are close enough to w1 and vS respectively, we have V ∗({u,w}) − V ∗({v,w}) > 0, so

that {u,w} ≻ {v,w}. Since {u,w}, {v,w} ∈ A 1
w , Weak Strategic Rationality II shows that

{u,w} ∼ {u, v,w}, so that V ∗({u,w}) = V ∗({u, v,w}). Since w1 > v1, vS > wS, and

λ∗u1 + (1− λ∗)uS > max{λ∗v1 + (1− λ∗)vS, λ
∗w1 + (1− λ∗)wS}, we obtain V ∗({u, v,w})−

V ∗({u,w}) = µ(0)(vS − uS), so that µ(0)(vS − uS) = 0. Since vS − uS > 0, it follows that

µ(0) = 0.

Proof of Proposition 1: By the standard uniqueness result on (∆(Z))I and the normal-

ization (i.e.,
∑

i∈S αi = 1), αi = α′
i for all i ∈ I and u = au′ + b for some real numbers

a > 0 and b. By the nondegeneracy, z ≻ z for some z, z ∈ Z. Normalize u such that

u(z) = 1 and u(z) = −1. For all x ∈ [0, 1] define p(x) = xδz + (1 − x)
(

1
2
δz +

1
2
δz
)

∈ ∆(Z),

pS(x) = (p(x))i∈S, and p(x) = (p(x), pS(x)). Then, u(p(x)) = x and
∑

i∈S αiu(p(x)) = x.
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Now, we show β1 = β ′
1. Since 1 − β1 > 0, 1 + βS > 0, α1 > 0, and αi > 0 for some

i ∈ S, then for all a ∈ [0, 1], there exists εa ∈ [0, a) such that (1 − β1)α1εa + (1 + βS)εa =

(1− β1)α1a. Since u(p(x)) = x = uS(pS(x)) for all x ∈ [0, 1], then (1− β1)α1u
(

p(εa)
)

+ (1+

βS)uS

(

pS(εa)
)

= (1− β1)α1u(p(a)) + (1 + βS)
∑

i∈S αiu(p(0)).

For all a ∈ [0, 1], define g(a) = V
({

p(εa),
(

p(a), pS(0)
)})

. Since
∑

i∈S αi = 1, we have
∑

i∈S αiu(p(a)) = u(p(a)). Hence, g(a) = (1 − β1)α1u(p(εa)) + (1 + βS)
∑

i∈S αiu(p(εa)) +

β1α1u(p(a))− βS

∑

i∈S αiu(p(εa)) = (α1 + 1)u(p(εa)) + β1α1(u(p(a))− u(p(εa))).

Since ε0 = 0, then g(0) = V (p(0)). Since g is continuous and V (z) > g(0) > V (z), there

exists a positive number a such that V (z) > g(a) > V (z), so that z ≻
{

p(εa),
(

p(a), pS(0)
)}

≻ z. By the continuity, there exists η ∈ [0, 1] such that ηδz+(1−η)δz ∼
{

p(εa),
(

p(a), pS(0)
)}

.

To make notation simple, let r = ηδz + (1− η)δz.

Since α1u(r)+
∑

i∈S αiu(r) = (α1+1)u(r), it follows that (α1+1)u(p(εa))+β1α1(u(p(a))−

u(p(εa))) = g(a) = (α1+1)u(r). Since u(p(a))−u(p(εa)) 6= 0, we obtain β1 =
(α1+1)(u(r)−u(p(εa))
α1(u(p(a))−u(p(εa)))

=

(α′

1
+1)(u′(r)−u′(p(εa))

α′

1
(u′(p(a))−u′(p(εa)))

= β ′
1, where the equality holds because αi = α′

i and u = au′ + b for some

a > 0 and b ∈ R.

Next, we show βS = β ′
S. Since 1−β1 > 0, 1+βS > 0, and αi > 0 for some i ∈ I, then for

all a ∈ [0, 1], there exists ξa ∈ [0, a) such that (1−β1)α1u(p(ξa))+(1+βS)
∑

i∈S αiu(p(ξa))) =

(1−β1)α1u(p(0))+(1+βS)
∑

i∈S αiu(p(a)). Given this ξ, we can show βS = β ′
S by considering

{

(p(ξa), (p(0), pS(a))
}

, instead of
{

p(εa),
(

p(a), pS(0)
)}

, in the same way of proving β1 = β ′
1.

Proof of Proposition 2: Suppose that q1 ≻1 p1, {p, q} ≻ {q}, and pS ≻S qS. Then, 0 <

V ({p, q})−V (q) = (max{U(p), U(q)}+β1α1u(q1)−βS

∑

i∈S αiu(pi))− (U(q)+β1α1u(q1)−

βS

∑

i∈S αiu(qi)) = (max{U(p), U(q)} − U(q)) + βS(
∑

i∈S αiu(qi) −
∑

i∈S αiu(pi)). Hence,

0 ≤ βS(
∑

i∈S αiu(pi) −
∑

i∈S αiu(qi)) < max{U(p), U(q)} − U(q) because βS ≥ 0, so that

U(p) > U(q). Hence, V ({p, q}) − V (p) = β1α1(u(q1) − u(p1)). Since q1 ≻1 p1, we have

u(q1)− u(p1) > 0. Therefore, {p, q} % {p} if and only if V ({p, q})− V (p) ≥ 0 if and only

if β1α1(u(q1)− u(p1)) ≥ 0 if and only if β1 ≥ 0. Hence, Proposition 2 holds.

Proof of Proposition 3: Let αX
1 ≤ αY

1 to show that X is more altruistic than Y . Fix

p, q such that pS ≻j
S qS for all j ∈ {X, Y } and p %Y q. Since pS ≻j

S qS for all j ∈ {X, Y },
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then
∑

i∈S αiu(pi) >
∑

i∈S αiu(qi). First consider the case where u(p1) ≥ u(q1). Since

αX
1 > 0, we obtain αX

1 u(p1) +
∑

i∈S αiu(pi) ≥ αX
1 u(q1) +

∑

i∈S αiu(qi). Hence, p %X q, as

desired. Next consider the case where u(p1) < u(q1). Since p %Y q, then αY
1 (u(p1)−u(q1)) ≥

∑

i∈S αiu(qi)−
∑

i∈S αiu(pi). Since u(p1)−u(q1) < 0 and αX
1 ≤ αY

1 , then αX
1 (u(p1)−u(q1)) ≥

∑

i∈S αiu(qi)−
∑

i∈S αiu(pi). Therefore, α
X
1 u(p1) +

∑

i∈S αiu(pi) ≥ αX
1 u(q1) +

∑

i∈S αiu(qi).

Hence, p %X q.

To show the converse, choose any p, q ∈ (∆(Z))I such that pS ≻j
S qS, q1 ≻

j
1 p1 for all j ∈

{X, Y }, and p ∼Yq. (Such p and q exist because α1 > 0 and αi > 0 for some i ∈ S.) Hence,

αY
1 u(p1) +

∑

i∈S αiu(pi) = αY
1 u(q1) +

∑

i∈S αiu(qi), so that αY
1 =

∑
i∈S

αiu(pi)−
∑

i∈S
αiu(qi)

u(q1)−u(p1)
.

On the other hand, since X is more altruistic than Y , then p %X q, so that αX
1 u(p1) +

∑

i∈S αiu(pi) ≥ αX
1 u(q1) +

∑

i∈S αiu(qi), so that
∑

i∈S
αiu(pi)−

∑
i∈S

αiu(qi)

u(q1)−u(p1)
≥ αX

1 . Therefore,

αY
1 ≥ αX

1 .

Proof of Proposition 4: To show the proposition, for all j ∈ {X, Y } and p ∈ (∆(Z))I ,

define U j(p) = (1−βj
1)α1u(p1)+(1+βj

S)
∑

i∈S αiu(pi): for all j ∈ {X, Y } and for all A ∈ A ,

define V j(A) = maxp∈A U j(p) + βj
1 maxq∈A α1u(q1)− βj

S maxr∈A
∑

i∈S αiu(ri)

First, we show (i). Choose p, q ∈ (∆(Z))I and r ∈ ∆(Z) such that (i) q1 ≻j
1 p1, (ii)

{p, q } ≻j {q }, (iii) pS ≻j
S qS for each j ∈ {X, Y }, and {p, q } ∼Y {(r)i∈I}. Then, by the ar-

gument in Proposition 2, U j(p) > U j(q) for each j ∈ {X, Y }. Since %X is more pride-seeking

(less temptation-averse) than %Y , we have {p, q } %X {(r)i∈I}. Since {p, q } ∼Y {(r)i∈I},

we have (1−βY
1 )α1u(p1)+

∑

i∈S αiu(pi)+βY
1 α1u(q1) = V Y ({p, q }) = u(r). Since {p, q } %X

{(r)i∈I}, we have u(r) ≤ V X({p, q }) = (1−βX
1 )α1u(p1)+

∑

i∈S αiu(pi)+βX
1 α1u(q1). Hence,

(1−βY
1 )α1u(p1)+

∑

i∈S αiu(pi)+βY
1 α1u(q1) ≤ (1−βX

1 )α1u(p1)+
∑

i∈S αiu(pi)+βX
1 α1u(q1),

so that βY
1 α1(u(q1)−u(p1)) ≤ βX

1 α1(u(q1)−u(p1)). Hence, β
Y
1 ≤ βX

1 because u(q1) > u(p1).

To show the converse assume βY
1 ≤ βX

1 . Choose p, q ∈ (∆(Z))I and r ∈ ∆(Z) such that

(i) q1 ≻
j
1 p1, (ii) {p, q } ≻j {q }, (iii) pS ≻j

S qS for each j ∈ {X, Y }, and {p, q } %Y {(r)i∈I}.

Then, u(r) ≤ V Y ({p, q }) ≡ (1−βY
1 )α1u(p1)+

∑

i∈S αiu(pi)+βY
1 α1u(q1) ≤ (1−βX

1 )α1u(p1)+
∑

i∈S αiu(pi) + βX
1 α1u(q1) ≡ V X({p, q }). So, we obtain u(r) ≤ V X({p, q }). Hence, the

converse holds.
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Next we show (ii). Choose p, q, r ∈ (∆(Z))I and l ∈ ∆(Z) such that (i) qS ≻j
S pS,

(ii) r1 ≻j
1 p1, (iii) {p, q, r} ≻j {q, r} for each j ∈ {X, Y }, and {(l)i∈I} ∼Y {p, q }. Since

%X is more shame averse than %Y , we have {(l)i∈I} %X {p, q }. Now we will show that

U j(p) > U j(q) for all j ∈ {X, Y }. To see this note that 0 < V j({p, q, r}) − V j({q, r}) =
[

max{U j(p), U j(q), U j(r)}+βj
1α1max{u(q1), u(r1)}−βj

S max{
∑

i∈S αiu(qi),
∑

i∈S αiu(ri)}
]

−
[

max{U j(q), U j(r)}+ βj
1α1max{u(q1), u(r1)} − βj

S max{
∑

i∈S αiu(qi),
∑

i∈S αiu(ri)}
]

=

max{U j(p), U j(q), U j(r)}−max{U j(q), U j(r)}, so that U j(p) > max{U j(q), U j(r)} for each

j ∈ {X, Y }. Since qS ≻j
S pS, we have p1 ≻j

1 q1 for each j ∈ {X, Y }. Moreover, we have

V j({p, q}) = U j(p) + βj
1α1u(p1) − βj

S

∑

i∈S αiu(qi) = α1u(p1) + (1 + βj
S)

∑

i∈S αiu(pi) −

βj
S

∑

i∈S αiu(qi) for each j ∈ {X, Y }.

Since {(l)i∈I} ∼Y {p, q }, we have α1u(p1) + (1 + βY
S )

∑

i∈S αiu(pi) − βY
S

∑

i∈S αiu(qi) =

V Y ({p, q}) = u(l). Since {(l)i∈I} %X {p, q}, we have u(l) ≥ V X({p, q}) = α1u(p1) + (1 +

βX
S )

∑

i∈S αiu(pi)−βX
S

∑

i∈S αiu(qi). Hence, α1u(p1)+(1+βX
S )

∑

i∈S αiu(pi)−βX
S

∑

i∈S αiu(qi) ≤

α1u(p1)+(1+βY
S )

∑

i∈S αiu(pi)−βY
S

∑

i∈S αiu(qi), so that β
Y
S (

∑

i∈S αiu(qi)−
∑

i∈S αiu(pi)) ≤

βX
S (

∑

i∈S αiu(qi)−
∑

i∈S αiu(pi)). Hence, β
Y
S ≤ βX

S .

To show the converse assume βY
S ≤ βX

S . Choose p, q, r ∈ (∆(Z))I and l ∈ ∆(Z) such

that (i) qS ≻j
S pS, (ii) r1 ≻

j
1 p1, (iii) {p, q, r} ≻j {q, r} for each j ∈ {X, Y }, and {(l)i∈I} %Y

{p, q }. Then, u(l) ≥ V Y ({p, q }) ≡ α1u(p1) + (1 + βY
S )

∑

i∈S αiu(pi) − βY
S

∑

i∈S αiu(qi) ≥

α1u(p1) + (1 + βX
S )

∑

i∈S αiu(pi) − βX
S

∑

i∈S αiu(qi) ≡ V X({p, q }). So, we obtain u(l) ≥

V X({p, q }). Hence, the converse holds.

Proof of Proposition 5: Let % be represented by the GU model with (u,β,α). By the

nondegeneracy, z ≻ z for some z, z ∈ Z. Normalize u such that u(z) = 1 and u(z) = 0.

For all x ∈ [0, 1] define p(x) = xδz + (1 − x)δz ∈ ∆(Z) and pS(x) = (p(x))i∈S. There

exists ε ∈ (0, 1) such that [(1− β1)α1 + (1 + βS)](1− ε) > max{(1− β1)α1, 1 + βS}. Define

pU = (p(1 − ε), pS(1 − ε)), p1 = (p(1), pS(0)), and pS = (p(0), pS(1)). Then, U(pU) >

max{U(p1), U(pS)}, u(p11) > max{u(pU1 ), u(p
S
1 )}, and uS(p

S
S) > max{uS(p

1
S), uS(p

U
S )}. Take

any set A ∈ A . Choose any p∗ ∈ argmaxp∈A U(p) and q∗ ∈ A such that U(q∗) < U(p∗). It

suffices to show p∗ ∈ C(A) and q∗ 6∈ C(A).
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Fix α ∈ (0, 1). Let q∗ = αpU + (1 − α)p∗ and B = {q∗} ∪ (α{p1,pS} + (1 − α)A).

Then U(q∗) > U(r) for all r ∈ B such that r 6= q∗. Moreover, u(q∗1) < u(αp11 + (1 − α)p∗1)

and uS(q
∗
S) < uS(αp

S
S + (1 − α)p∗S). Then B 6∈ A 1

q∗ . We obtain V (B) − V (B \ {q∗}) =

U(q∗) − maxr∈B\{q∗} U(r) > 0, so that B ≻ B \ {q∗}. By Consistency, C(B) = {q∗}. By

choosing α arbitrarily small and using Closed Graph, we obtain p∗ ∈ C(A).

To show q∗ 6∈ C(A), let D = {q ∈ (∆(Z))I |U(q∗) < U(q) < U(p∗)}. There exist

l, l ∈ ∆(Z) such that U(q∗) < u(l) < u(l) < U(p∗). By using l and l, we can de-

fine qU , q1, qS ∈ D such that U(qU) > max{U(q1), U(qS)}, u(q11) > max{u(qU1 ), u(q
S
1 )},

and uS(q
S
S ) > max{uS(q

1
S), uS(q

U
S )}, as we defined pU ,p1,pS by using z and z. Let B =

{qU , q1, qS, q∗}. Hence, V (B)− V (B \ {qU}) = U(qU)−max{U(q1), U(qS), U(q∗)}, so that

B ≻ B \ {qU}. However, qU is not individually optimal in B. Hence, by Consistency,

C(B) = {qU}.

Define A′ = A ∪ {qU}. Since qU ∈ D, we obtain U(qU) < U(p∗), so that p∗ ∈

argmaxp∈A′ U(p). By the first part of the proof, p∗ ∈ C(A′). Suppose that q∗ ∈ C(A)

to show a contradiction. By WARP, q∗ ∈ C(A′) because p∗ ∈ C(A′) ∩ A. Moreover,

q∗ ∈ C(B) because qU ∈ C(B) ∩ A′. This contradicts with C(B) = {qU}.

Proof of Proposition 6: In the following, we show (i). (ii) can be proved in the same

way. Fix z, z ∈ Z such that z ≻ z. Normalize u by u(z) = 1 and u(z) = 0. Consider

the case where α1 ≥ 1. Define q1 = 1
α1
z + α1−1

α1
z, p = (z, (z)i∈S), and q = (q1, (z)i∈S).

By a direct calculation, we obtain p ∼ q and p ≻S q.29 Hence, Impure Altruism implies

C({p, q}) = {p}. Hence, by Proposition 5, 0 < U(p) − U(q) =
∑

i∈I αi(u(pi) − u(qi)) +

βS(
∑

i∈S αiu(pi)−
∑

i∈S αiu(qi)) + β1α1(u(q1)− u(p1)) = βS + β1, so that βS > −β1. In the

case where α1 ≤ 1, we can show the result in the same way by defining q1 = α1z+(1−α1)z.

Next, we show the converse (i.e., βS > −β1 implies Impure Altruism). Choose any

p, q ∈ ∆(Z) such that p ∼ q and pS ≻S qS to show C({p, q}) = {p}. It suffices to show that

U(p) > U(q). By assumption, β1 > −βS. Hence, U(p) − U(q) >
∑

i∈I αi(u(pi) − u(qi)) +

29Then, u(z) = 0, uS(z) = 1, u(q1) = 1/α1, and
∑

i∈S αiu(qi) = 0. Hence,
∑

i∈I αiu(pi) = 1 =
∑

i∈I αiu(qi).
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βS(
∑

i∈S αiu(pi)−
∑

i∈S αiu(qi))−βSα1(u(q1)−u(p1)) = (1+βS)
∑

i∈I αi(u(pi)−u(qi)) ≥ 0,

where the equality holds because q ∼ p. Therefore, U(p) > U(q) so that C({p, q}) = {p}.

Proof of Proposition 7: First note that since u′ > 0, u′(0) = +∞, α1 > 0, and βS ≥ 0, the

budget constraint is binding (i.e., c+ d = w + τ). Hence, V ({(c, d) ∈ R
2
+|c+ d ≤ w + τ}) =

V ({(c, w + τ − c)|c ∈ [0, w + τ ]}) = α1u(c
∗) + (1 + βS)u(w + τ − c∗) − βSu(w + τ), where

c∗ ∈ argmaxc∈[0,w+τ ]α1u(c) + (1 + βS)u(w + τ − c). Moreover, c∗(α1, βS, τ) is an interior

solution determined by the first order condition: 0 = α1u
′(c∗) + (1 + βS)u

′(w + τ − c∗). For

any βS, c
∗ → 0 as α1 → 0 and c∗ → w+ τ as α1 → ∞. Therefore, by the intermediate value

theorem, for any βS ≥ 0, there exists α1(βS) such that c∗(α1(βS), βS, τ) = w.

Define f(α1, βS, τ) = V ({(w, 0)}) − V ({(c, d) ∈ R
2
+|c + d ≤ w + τ}). Since u(0) =

0, we have f(α1, βS, τ) = α1u(w) − [α1u(c
∗) + (1 + βS)u(w + τ − c∗) − βSu(w + τ)] =

α1(u(w)− u(c∗))− u(w+ τ − c∗)− βS(u(w+ τ − c∗)− u(w+ τ)). Hence, f(α1(βS), βS, τ) =

−u(τ) − βS(u(τ) − u(w + τ)) = βS(u(w + τ) − u(τ)) − u(τ). Define βS = u(τ)
u(w+τ)−u(τ)

. It

follows that f(α1(βS), βS, τ) > 0 if and only if βS > βS.

Therefore, for any βS > βS, f tends to strictly positive as α1 → α(βS). Moreover, f

tends to strictly negative as α1 → ∞.30 Therefore, by the intermediate value theorem,

for any βS > βS, there exists α1(βS) such that f(α1(βS), βS, τ) = 0 and ∞ > α1(βS) >

α1(βS). Moreover, f tends to strictly negative as α1 → 0.31 Therefore, by the intermediate

value theorem, for any βS > βS, there exists α1(βS) such that f(α1(βS), βS, τ) = 0 and

0 < α1(βS) < α(βS). By this way, we have defined α1, α1 on (βS,+∞). Finally, define

α1(βS) = α1(βS) and α1(βS) = α1(βS). Then, f(α1(βS), βS, τ) = 0 = f(α1(βS), βS, τ).

By the implicit function theorem, it can be shown that ∂c∗

∂α1
(α1, βS, τ) > 0. By the

envelop theorem, we have ∂f

∂α1

(α1, βS, τ) = u(w)− u(c∗), hence ∂f

∂α1

(α1, βS, τ) < 0 if and only

if w < c∗(α1, βS, τ) if and only if α1 > α1(βS). In addition, ∂f

∂βS
(α1, βS, τ) = u(w + τ) −

u(w + τ − c∗) > 0.

30To see this note that, c∗ → w+ τ as α1 → ∞. Hence, f(α1, βS , τ) = α1(u(w)− u(c∗))− u(w+ τ − c∗)−
βS(u(w + τ − c∗)− u(w + τ)) → −∞.

31To see this note that, c∗ → 0 as α1 → 0. Hence, f(α1, βS , τ) = α1(u(w) − u(c∗)) − u(w + τ − c∗) −
βS(u(w + τ − c∗)− u(w + τ)) → −u(w + τ).
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Remember that α1(βS) > α1(βS). Hence,
∂f

∂α1
(α1(βS), βS, τ) < 0 and ∂f

∂βS
(α1(βS), βS, τ) >

0. Since f(α1(βS), βS, τ) = 0, it follows that α1(βS) is strictly increasing.32

Similarly, remember also that α1(βS) < α1(βS). Hence, ∂f

∂α1
(α1(βS), βS, τ) > 0 and

∂f

∂βS

(α1(βS), βS, τ) > 0. Since f(α1(βS), βS, τ) = 0, it follows that α1(βS) is strictly decreas-

ing.

Moreover, for any βS, f(α1, βS, τ) ≥ 0 if and only if α1 ∈ [α1(βS), α1(βS)] and f(α1, βS, τ) <

0 if and only if α1 < α1(βS) or α1 > α1(βS).

Proof of Proposition 8: Define d̂ ≡ d∗ + τ = d∗ + g for τ = g, where d∗ is the optimal

donation. Since u′ > 0, the budget constraints must be binding (i.e., s + w = e and

c+d = w−τ). Hence, the decision maker’s problem is as follows: maxw V ({(w−τ −d∗, d∗+

g)|d∗ ≤ w− τ}) + δV ({(e−w, 0)}) = maxd̂,w h(w, d̂, τ), where h(w, d̂, τ) = (1− β1)α1u(w−

d̂) + (1 + βS)u(d̂) + β1α1u(w − τ)− βSu(w) + δα1u(e− w).

If β1 = 0 = βS, then h does not depend on τ (i.e., g), so that the solution d̂ is constant

in g. Hence, (ii) holds. To show (i), assume β1 > βS. Define w∗(d̂, τ) = argmaxw h(w, d̂, τ),

f(d̂, τ) = h(w∗(d̂, τ), d̂, τ), and d̂(τ) = argmaxd̂ f(d̂, τ). Since u′ > 0, u′′ < 0, and u′(0) =

+∞, both w∗ and d̂ are interior solutions.

We show that d̂(τ) is strictly increasing. Given β1α1 > βS ≥ 0 and u′′′ ≥ 0, direct

calculation shows ∂2h(w,d̂,τ)
∂w2 < 0.33 Moreover, ∂2h(w,d̂,τ)

∂w∂τ
= −β1α1u

′′(w − τ) > 0, for β1α1 >

βS ≥ 0. Therefore, by the standard result on monotone comparative statics, ∂w∗(d̂,τ)
∂τ

> 0.

Hence, by the envelope theorem, ∂2f(d̂,τ)

∂d̂∂τ
= −(1 − β1)α1u

′′(w∗(d̂, τ)− d̂)∂w
∗(d̂,τ)
∂τ

> 0.

By the implicit function theorem, a direct calculation shows that ∂w∗(d̂,τ)

∂d̂
< 1.34 Hence,

32To see this suppose by way of contradiction that βS < β′
S and α1(βS) ≥ α1(β

′
S). Then, 0 =

f(α1(βS), βS , τ) < f(α1(βS), β
′
S , τ) ≤ f(α1(β

′
S), β

′
S , τ) = 0, which is a contradiction. The first inequal-

ity holds because ∂f
∂βS

(α1(βS), βS , τ) > 0. The second inequality holds because α1(β
′
S) > α1(β

′
S) and

∂f
∂α1

(α1, β
′
S , τ) < 0 if and only if α1 > α1(β

′
S).

33 ∂2h(w,d̂,τ)
∂w2 = (1 − β1)α1u

′′(w − d̂) + β1α1u
′′(w − τ) − βSu

′′(w) + δα1u
′′(e − w). Since u′′′ ≥ 0, then

u′′(w − τ) ≤ u′′(w) < 0. Hence, β1α1 > βS implies ∂2h(w,d̂,τ)
∂w2 < 0.

34To see this, note that w∗(d̂, τ) is characterized by the first order condition: 0 = ∂h(w,d̂,τ)
∂w = (1 −

β1)α1u
′(w − d̂) + β1α1u

′(w − τ) − βSu
′(w) − δα1u

′(e − w) ≡ k(w, d̂, τ). By the implicit function theorem,
∂w∗(d̂,τ)

∂d̂
= − ∂k/∂d̂

∂k/∂w =
(

1 + β1α1u
′′(w−τ)−βSu

′′(w)+δα1u
′′(e−w)

(1−β1)α1u′′(w−d̂)

)−1
< 1 because β1α1u

′′(w − τ)− βSu
′′(w) < 0.
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∂2f(d̂,τ)

∂d̂2
= −(1 − β1)α1u

′′(w∗(d̂, τ) − d̂)(∂w
∗(d̂,τ)

∂d̂
− 1) + (1 + βS)u

′′(d̂) < 0. Therefore, by the

monotone comparative statics again, d̂ is strictly increasing in τ (i.e., g).
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C Extension (Not for Publication)

In this section, to incorporate inequality aversion, we axiomatize an extended GU model, in

which uS is a maxmin utility function. We consider a decision maker who is inequality-averse

among other agents’ allocations.

It is well known that the independence axiom may fail in social context because mixtures

among allocations can offset inequality in the mixed allocation. However, mixing with con-

stant allocations does not offset inequality. Hence, we keep the following weaker version of

the independence axiom:

Definition: A set C ∈ A is called constant over S if pi = pj for any i, j ∈ S and p ∈ C.

Axiom (Weak Independence): Let α ∈ [0, 1] and A,B,C ∈ A . Suppose that C is constant

over S. Then A % B if and only if αA+ (1− α)C % αB + (1− α)C.

We need an additional axiom to make sure that %1 and %S well-defined.35

Axiom (Separability): For all p1, q1, l1, r1 ∈ ∆(Z) and pS, qS, lS, rS ∈ (∆(Z))S, (i) (p1, lS) %

(q1, lS) if and only if (p1, rS) % (q1, rS); (ii) (l1, pS) % (l1, qS) if and only if (r1, pS) % (r1, qS).

The next axiom captures inequality aversion among other agents’ allocations.

Axiom (Quasi-Concavity) For any pS, qS ∈ (∆(Z))S, if pS ∼S qS, then
1
2
pS + 1

2
qS %S pS.

Corollary: The following statements are equivalent:

(a) % satisfies Quasi-Concavity, Weak Independence, and Separability as well as the axioms

35I appreciate a referee who points out the necessity of this axiom.
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in the theorem except Independence.

(b) There exists an extended GU model in which
∑

i∈S αiu(pi) = minαS∈C

∑

i∈S αiu(pi) for

some C ⊂ ∆(S).

Proof: It is easy to see the necessity of the axioms. To show the sufficiency it suffices to

show the following two lemmas. First, instead of Lemma 1, we prove the next lemma by

using the standard argument with the von Neumann-Morgenstern’s theorem and Gilboa and

Schmeidler’s (1989) theorem.

Lemma 9 There exist a mixture linear function u1 on ∆(Z) and a closed subset C of ∆(S)

such that (i) u1 represents %1 on ∆(Z), (ii) there exist z, z ∈ Z such that u1(z) = 1 ≥

u1(p) ≥ 0 = u1(z) for all p ∈ ∆(Z), and (iii)
∑

i∈S αiu(pi) ≡ minα∈C

∑

i∈S αiu1(pi) repre-

sents %S.

Given the above u1 and uS, we define %∗ in the same way as in the proof of theorem.

Weak Independence of % on A implies Independence of %∗ on A ∗.

Lemma 10 %∗ satisfies Independence*.

Proof of Lemma 10: Fix C∗ ∈ A ∗. For all x ∈ [0, 1], define p(x) = xδz + (1 −

x)δz and pS(x) = (p(x))i∈S. Then, for all u ≡ (u1, uS) ∈ [0, 1]2, u1(p(u1)) = u1 and
∑

i∈S αiu(pi(uS)) = uS. Define C = {(p(u1), pS(uS))|u ≡ (u1, uS) ∈ C∗}. Then, C is con-

stant over S and u(C) = C∗. Therefore, by Weak Independence, A∗ %∗ B∗ ⇔ A % B ⇔

αA+ (1− α)C % αB + (1− α)C ⇔ αA∗ + (1− α)C∗ %∗ αB∗ + (1− α)C∗. �

Since %∗ satisfies the same properties as in the proof of the theorem, Lemma 4–8 hold

in the same way. Hence, the sufficiency of the axioms holds with u1 = u1(p1) and uS =

minα∈C

∑

i∈S αiu1(pi). Therefore, Corollary holds. �
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D Discussion on Experiments (Not for Publication)

In the experiments conducted by Lazear et al. (2012), we could observe that medium-level

donors exit more often than low-level and high-level donors, when playing the dictator game

is subsidized. In the experiments, 96 subjects (48 dictators) participated in five sequential

sessions of dictator games with an exit option. Lazear et al. (2012) provided dictators with

$10 as baseline endowment and, on top of that, added subsidies of $0, $1, $3, $6, and $10

to the baseline endowment in order. For each subsidy value, dictators decided whether to

play the dictator game or exit. Then, the dictators decided the donation amount publicly if

they did not exit. For each dictator, the left figure in Figure 3 (p. 14) of Section 8 shows

the minimal subsidy needed to play the dictator game and the dictator’s average donated

proportion.36 Clearly, the figure shows tendency (i).37

We found consistent evidence for the tendency in the earliest experiments on dictator

games with an exit option conducted by Dana et al. (2006). Dana et al. (2006) provided

dictators with $10 as an endowment and asked dictators the donation amount before the

dictators knew that they could exit privately. When the dictators exited, they obtained

$9 privately and receivers obtained $0 without knowing that this is a consequence of the

dictators’ choice. The right figure in Figure 3 shows the percentage of dictators who exited

and their (intended) donated proportion, which clearly exhibits the tendency.38

In the experiment conducted by Dana et al. (2006), dictators were anonymous, while in

the treatment conducted by Lazear et al. (2012), receivers could identify dictators. Hence,

the consistency between these two experiments, as captured by Figure 3, would support our

hypothesis: as long as playing dictator games is common knowledge among subjects, the

dictator would consider the receiver’s wish that the dictator should act altruistically. Hence,

36We regressed donated proportion on subsidy size. The estimated coefficient on the subsidy size is
−1.6 · 10−4 (p = 0.887), which is not significantly different from zero. Hence, the donated proportion is
statistically constant across the treatments.

37We made the left figure of Figure 3 based on the no-anonymity treatment in Experiment 2 in Lazear et
al. (2012).

38We made the right figure of Figure 3 based on Figure 1 (p.197) in Dana et al. (2006).
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the dictator could feel pride in acting altruistically by living up to the receiver’s wish and

ashamed of acting selfishly by denying their wish, even though the receiver could not identify

the dictator.
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