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In this online appendix, we provide the complete proof of Theorem 4. We

prove some lemmas.

Lemma 1: A dataset D is maxmin rationalizable if and only if there are vks ,

λk, s = 1, 2, k = 1, . . . , K, and π̄, π ≥ 0 with π̄ ≥ π > 0, such that: for all k

such that xk
s 6= xk

s′ ,

πvk1 = λkpk1

vk2 = λkpk2,

where π = π̄ when xk
1 < xk

2 and π = π when xk
1 > xk

2; for all k such that

xk
s = xk

s′

πvk1 ≥ λkpk1

πvk1 ≤ λkpk1

vk2 = λkpk2.

The numbers also satisfy that vks ≤ vk
′

s′ when xk
s > xk′

s′ .

Proof: To prove sufficiency, let vks , λ
k, s = 1, 2, k = 1, . . . , K, and π̄, π ≥ 0

with π̄ ≥ π be as in the statement of the lemma. Define µ̄, µ ∈ ∆(S) as follows.

Let µ̄1 = π̄/(1+ π̄), µ̄2 = 1/(1+ π̄), and µ
1
= π/(1+π), µ

2
= 1/(1+π). Since
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π̄ ≥ π,

µ̄1 ≥ µ
1
and µ̄2 ≤ µ

2
.

Define θk = λk/(1 + π̄) if xk
1 < xk

2 and θk = λk/(1 + π) if xk
1 > xk

2. Then we

have that µsv
k
s = θkpks , with µs = µ̄s when xk

1 < xk
2; and µs = µ

s
when xk

1 > xk
2.

Now consider k such that xk
1 = xk

2. By the assumption, there exists πk such

that π ≥ πk ≥ π such that πvk1 = λkpk1. Let µk
1 = π/(1 + π), µk

2 = 1/(1 + π),

and θk = λk/(1 + π). Since π ≥ π ≥ π,

µ1 ≡
π

1 + π
≥

πk

1 + πk
≥

π

1 + π
≡ µ

1
.

Hence, there exists αk ∈ [0, 1], µk
1 = αkµ1 + (1− αk)µ

1
. Then, µk

2 = 1 − µk
1 =

αk(1− µ1) + (1− αk)(1− µ
1
) = αkµ2 + (1− αk)µ

2
.

Given the numbers vks it is now routine to define a correspondence ρ such that

if x ≤ x′, y ∈ ρ(x) and y′ ∈ ρ(x′) then y ≥ y′ > 0, and with ρ(xk
s) ∋ vks . This

gives a concave and increasing function u with ∂u(c) = ρ(x). So θkpks
µs

∈ ∂u(xk
s)

for all s and k such that xk
1 6= xk

2. Moreover, for all k such that xk
1 = xk

2

(θkpk1, θ
kpk2) ∈ co

{

(

µ1∂u(x
k
1), µ2∂u(x

k
2)
)

,
(

µ
1
∂u(xk

1), µ2
∂u(xk

2)
)

}

.

Hence the first and second order conditions are satisfied for maxmin rational-

ization. We omit the proof of necessity.

We will define matrices A, B, E such that there exist numbers {vks}, {λ
k}, π̄,

π satisfying the conditions in Lemma 1 if and only if there exists a solution x

to the system of inequalities A · x = 0, B · x ≥ 0 and E · x > 0.

Let A be a matrix with 2K + 2 + K + 1 columns. The first 2K columns

are labeled with a different pair (k, s). The next 2 columns are labeled π̄ and

π. The next K columns are labeled with a k ∈ {1, . . . , K}. Finally the last

column is labeled p.

For each (k, 2) with k ∈ K0, A has a row with all zero entries with the

following exception. It has a 1 in the column labeled (k, s), among the first

group of 2K columns. It has a −1 in the column labeled k. In the column

labeled p it has − log(pks).

For each (k, s) with k ∈ K1, A has a row with all zero entries with the

following exception. It has a 1 in the column labeled (k, s), among the first

group of 2K columns. It has a −1 in the column labeled k. In the column



TRANSLATION INVARIANCE AND HOMOTHETICITY 3

labeled p it has − log(pks). Finally, it has a 1 in the column labeled π̄ if and

only if if s = 1. For each (k, s) with k ∈ K2, A has a row defined as above.

The only difference is that when s = 1 then it has a 1 in the column labeled π

instead of having a 1 in the column labeled π̄.

Let B be a matrix with the same number of columns as A. The columns of

B are labeled like those of A. For each (k, 1) with k ∈ K0, B has two rows. In

the first row, B has a row with all zero entries with the following exception.

It has a 1 in the column labeled (k, s), among the first group of 2K columns.

It has a 1 in the column labeled π̄. It has a −1 in the column labeled k. In

the column labeled p it has − log(pks). In the second row, B has a row with all

zero entries with the following exception. It has a −1 in the column labeled

(k, s), among the first group of 2K columns. It has a −1 in the column labeled

π. It has a 1 in the column labeled k. In the column labeled p it has log(pks).

In addition, B has a row for each pair (xk
s , x

k′

s′ ) with xk
s > xk′

s′ . The row for

xk
s > xk′

s′ has all zeroes except for a 1 in column (k′, s′) and a −1 in column

(k, s). Finally, B has one more row. This row as a 1 in the column for π̄ and

a −1 in the column for π.

Let E be a matrix with the same number of columns as A, labeled as above,

and a single row. The row has all zeroes except for a 1 in column p.

By Lemma 1, there is no rationalizing maxmin preference if and only if there

is no solution to the system of inequalities A · x = 0, B · x ≥ 0, and E · x > 0.

Suppose that all log(pks) are rational numbers. We shall use the following

version of the Theorem of the Alternative, which can be found as Theorem

1.6.1 in Stoer and Witzgall (1970).

Lemma*: Let A be an m × n matrix, B be an l × n matrix, and E be an

r × n matrix. Suppose that the entries of the matrices A, B, and E belong

to a commutative ordered field F. Exactly one of the following alternatives is

true.

(1) There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u ≫ 0.

(2) There is η ∈ Fm, θ ∈ Fl, and γ ∈ Fr such that η ·A+ θ ·B+ γ ·E = 0;

θ ≥ 0 and γ > 0.
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Then the non-existence of a solution to the system A · x = 0, B · x ≥ 0 and

E · x > 0 is equivalent to the existence of integer vectors η, θ and γ such that

θ ≥ 0, γ > 0, and η · A+ θ · B + γE = 0.

For a matrix D with 2K +2+K + 1 columns, let D1 denote the submatrix

corresponding to the first 2K columns, D2 correspond to the next 2, D3 to the

next K, and D4 to the last column. Note that, by construction of A, B and

E, η · A + θ · B + γE = 0 implies that η · A1 + θ · B1 = 0, η · A2 + θ · B2 = 0,

η ·A3 + θ ·B3 = 0, η ·A4 + θ ·B4 + γ = 0. In fact, we can without loss assume

that η, θ and γ take values of −1, 0 or 1. (This assumption is without loss

because we can replace each row of matrices A, B and E with as many copies

as indicated by the corresponding vector η, θ or γ.)

From the existence of such vectors it follows that we can obtain a sequence

(xki
si
, x

k′
i

s′
i

)ni=1 with xki
si
> x

k′
i

s′
i

. The source of each pair (xki
si
, x

k′
i

s′
i

) is that the column

(ki, si) of A is multiplied by η(ki,si) > 0 and the column (k′
i, s

′
i) of A is multiplied

by η(k′
i
,s′

i
) < 0. The vector η must then have η(ki,si) > 0 and η(k′

i
,s′

i
) > 0, with a

−1 in the first column and a 1 in the second.

We shall prove that the sequence (xki
si
, x

k′
i

s′
i

)ni=1 satisfies the properties stated

in the axiom.

Firstly, η ·A3 + θ ·B3 = 0 means that for each k, the number of is for which

k = ki equals the number of is for which k = k′
i.

Secondly, η · A2 + θ ·B2 = 0 implies that:
∑

k∈K1

η(k,1) +
∑

k∈K0

θ(k,1) + θπ≥π = 0

∑

k∈K2

η(k,1) −
∑

k∈K0

θ′(k,1) − θπ≥π = 0,

where θπ≥π is the nonnegative weight on the row associated with π ≥ π; θ(k,1)

and θ′(k,1) are the nonnegative weights on the two rows associated with (k, 1)

with k ∈ K0. (θ(k,1) and θ′(k,1) corresponds to the first row and the second row,
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respectively). Note that
∑

k∈K1

η(k,1) = #{i : ki ∈ K1, s = 1} −#{i : k′
i ∈ K1, s = 1}

≡ #I1,1 −#I ′1,1,
∑

k∈K2

η(k,1) = #{i : ki ∈ K2, s = 1} −#{i : k′
i ∈ K2, s = 1}

≡ #I2,1 −#I ′2,1,
∑

k∈K0

θ(k,1) = #{i : ki ∈ K0, s = 1} ≡ #I0,1,

∑

k∈K0

θ′(k,1) = #{i : k′
i ∈ K0, s = 1} ≡ #I ′0,1.

Hence,

#I1,1 −#I ′1,1 +#I0,1 = #I ′2,1 −#I2,1 +#I ′0,1 ≤ 0.

Therefore the sequence (xki
si
, x

k′
i

s′
i

)ni=1 satisfies the second property stated in the

axiom. Finally, since η · A4 + θ ·B4 + γ = 0,

0 > −γ

= η · A4 + θ · B4

=
∑

(k,s)∈(K0,2)∪(K1∪K2,1)

η(k,s)(− log pks)

+
∑

k∈K0

θ(k,1)(− log pk1) +
∑

k∈K0

θ′(k,1) log p
k
1

=

n
∑

i=1

log
p
k′
i

s′
i

pkisi

Hence
n
∏

i=1

pkisi

p
k′
i

s′
i

> 1.

The above proof assumes that the log of prices is rational. The proof of the

theorem follows along the same lines as Echenique and Saito (2015). Specifi-

cally, we have shown the following.
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Lemma 2: If {(xk, pk)} is a dataset satisfying SARMEU, in which log pk ∈ Q

for all k, then the dataset is maxmin rationalizable.

One can then prove the following

Lemma 3: If {(xk, pk)} is a dataset that satisfies SARMEU, and ε > 0 then

there is a collection of prices {qk} such that log qk ∈ Q, ‖pk− qk‖ < ε, and the

dataset {(xk, qk)} satisfies SARMEU.

The proof of Lemma 3 is exactly the same as in Echenique and Saito (2015).

Lemma 2 establishes the result in datasets in which the log of prices is

rational. Consider an arbitrary data set {(xk, pk)}, with prices that may not

be rational.

Suppose towards a contradiction that the dataset satisfies SARMEU, but

that it is not maxmin rational. Specifically then, by Lemma 1, suppose that

there is no solution to the system A · x = 0, B · x ≥ 0 and E · x > 0. Then

by Lemma* there are real vectors η, θ and γ such that θ ≥ 0, γ > 0, and

η · A+ θ · B + γE = 0.

Let {qk} be vectors of prices such that the dataset {(xk, qk)} satisfies SARMEU

and log qks ∈ Q for all k and s. (Such {qk} exists by Lemma 3.) Furthermore,

the prices qk can be chosen arbitrarily close to pk. Construct matrices A′, B′,

and E ′ from this dataset in the same way as A, B, and E above. Note that

only the prices are different in {(xk, qk)} compared to {(xk, pk)}. So E ′ = E,

B′
i = Bi and A′

i = Ai for i = 1, 2, 3. Since only prices qk are different in this

dataset, only A′
4 and B′

4 may be different from A4 and B4, respectively.

By Lemma 3, we can choose prices qk such that |η·A′
4+θ·B′

4−(η·A4+θ·B4)| <

γ/2. We have shown that η · A4 + θ · B4 = −γ, so the choice of prices qk

guarantees that η · A′
4 + θ · B′

4 < 0. Let γ′ = −η · A′
4 − θ · B′

4 > 0.

Note that θ · A′
i + η · B′

i + γ′Ei = 0 for i = 1, 2, 3. Hence

η · A′
4 + θ · B′

4 + γ′E4 = η · A′
4 + θ · B4 + γ′ = 0.

We also have that η ≥ 0 and γ′ > 0. Therefore θ, η, and γ′ exhibit a solution

to the dual system for dataset {(xk, qk)}, a contradiction with Lemma 2.
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