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Abstract. We provide revealed preference axioms that characterize mod-

els of translation invariant preferences. In particular, we characterize the

models of variational, maxmin, CARA and CRRA utilities. In each case

we present a revealed preference axiom that is satisfied by a dataset if and

only if the dataset is consistent with the corresponding utility representa-

tion. Our results complement traditional exercises in decision theory that

take preferences as primitive.

1. Introduction

We work out the testable implications of models with translation invariant

preferences. Given a finite dataset on purchases of state-contingent assets, we

give a revealed preference axiom that describes the datasets that are consistent

with different models of translation invariant preferences.

These models include risk neutral variational preferences (Maccheroni et al.,

2006), risk neutral maxmin preferences (Gilboa and Schmeidler, 1989), and

subjective expected utility preferences with constant absolute risk aversion:

so-called CARA preferences. Analogously to the CARA case, we also work

out the testable implications of subjective expected utility preferences with

constant relative risk aversion: so-called CRRA preferences (these form the

“homothetic” class alluded to in the title). The models have been used by

economists for different purposes. Variational and maxmin preferences are

the most commonly-used models of ambiguity aversion. They are also used
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to capture model robustness (Hansen and Sargent, 2008). CARA and CRRA

preferences are very common in applied work in macroeconomics and finance,

among other fields.

Our contribution is to start from finite data on state-contingent consumption

purchases, such as one would observe from a market experiment on choice

under uncertainty (Hey and Pace, 2014; Ahn et al., 2014; Bayer et al., 2012).

We describe the datasets that are rationalizable as consistent with a preference

relation that satisfies translation invariance. When we say that we describe

the datasets that are rationalizable, we mean that we provide a property,

a “revealed preference axiom,” that the data satisfy if and only if they are

consistent with the theory in question.

The models we study have well known axiomatizations when one takes pref-

erences as primitive, but not when one takes consumption data as given. The

axiomatization of variational preferences is due to Maccheroni et al. (2006)

(see also Grant and Polak (2013) and Siniscalchi (2009) for variations on their

arguments). The axiomatization of maxmin is due to Gilboa and Schmeidler

(1989). Our focus is on behavior in the market, not on preferences. The prim-

itive is a finite list of purchases of state-contingent payments, each one made

at a different price vector.

In contrast with most papers on ambiguity, we do not work in the Anscombe-

Aumann framework. For this reason, we must restrict attention to risk-

neutral variational and maxmin preferences. The Anscombe-Aumann frame-

work would allow us to identify the utility function over outcomes. Without

this recourse, we are restricted to the risk-neutral case. If we were to add the

“observation” of a utility function to our datasets, then we could proceed as

in the Anscombe-Aumann approach.

It would of course be desirable to obtain results without the assumption

of risk neutrality; but these are likely difficult to come by. One exception is

the case of maxmin utility with two states: we give a characterization of the

data sets that are rationalizable with risk-averse (concave utility over money)

maxmin in Section 6. The two-state case is restrictive, but probably of interest

for experiments on ambiguity: some of the most basic experiments illustrating

ambiguity aversion involve two states.
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As is typical in revealed preference models, concavity often adds no empirical

content to the model in question. In the case of subjective uncertainty, with

our hypothesis of risk-neutrality, this implies that ambiguity aversion in the

sense of Gilboa and Schmeidler (1989) adds no empirical content. Of course,

this is due to the linear structure of prices and would break down in a more

general framework.

The closest papers to ours are Varian (1988), Bayer et al. (2012) and Polisson

et al. (2013). Our results on CARA and CRRA are close to Varian (1988). The

main difference is that Varian considers the case of objective probabilities, not

subjective. Bayer et al. (2012) and Polisson et al. (2013) look at the testable

implications of models of ambiguity aversion for the same kinds of data that we

assume in this paper. They give a characterization in terms of the solution of a

system of inequalities. Our contribution is different because we give a revealed

preference axiom that has to be satisfied for the data to be rationalizable. It

can be written in the UNCAF form, the importance of which is developed by

(Chambers et al., 2014).

The papers by (Kubler et al., 2014) and (Echenique and Saito, 2015) are

also related. Kubler et al solve the same problem as we do here, but for the

case of expected utility theory with known (objective) probabilities over states.

Echenique and Saito solve the problem for subjective expected utility.

2. Definitions.

Let S be a finite set of states of the world. An act is a function from

S into R. So RS is the set of acts. An act can be interpreted as a state-

contingent monetary payment. Define ‖x‖1 =
∑

s xs. ∆(S) represents the set

of probability distributions on S, i.e. ∆(S) = {π ∈ RS
+ :

∑

s πs = 1}.

A preference relation on RS is a binary relation � that is complete and

transitive. Given a preference relation �, we denote by ≻ the strict part of �.

A function u : RS → R defines a preference relation � by x � y if and only if

u(x) ≥ u(y). We say that u represents �, or that it is a utility function for �.

A preference relation � on RS is locally nonsatiated if for every x and every

ε > 0 there is y such that ‖x− y‖ < ε and y ≻ x.
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3. Preferences, utilities, and data.

A data set D is a finite collection {(pk, xk)}Kk=1, where each pk ∈ RS
++ is a

vector of strictly positive (Arrow-Debreu) prices, and each xk ∈ RS is an act.

The interpretation of a dataset is that each pair (pk, xk) consists of an act xk

chosen from the budget {x ∈ RS : pk · x ≤ pk · xk} of affordable acts.1

A data set {(pk, xk)}Kk=1 is rationalizable by a preference relation � if xk � x

whenever pk ·xk ≥ pk ·x. So a data set is rationalizable by a preference relation

when the choices in the dataset would have been optimal for that preference

relation.

A data set {(pk, xk)}Kk=1 is rationalizable by a utility function u if it is ra-

tionalizable by the preference relation represented by u. So a data set is

rationalizable by a utility function when the choices in the dataset would have

maximized that utility function in the relevant budget set.

A preference relation � is translation invariant if for all x, y ∈ RS and all

c ∈ R, we have x � y if and only if x+ (c, . . . , c) � y + (c, . . . , c).

A preference relation � is homothetic if for all x, y ∈ RS and all α > 0, we

have x � y if and only if αx � αy.

A preference relation � is a risk-neutral variational preference if there is a

convex and lower semicontinuous function c : ∆(S) → R ∪ {+∞} for which

there is π ∈ ∆(S) satisfying c(π) < +∞, c(π) < +∞ implies for all s ∈ S,

πs > 0, such that the utility function

inf
π∈∆(S)

π · x+ c(π)

represents �. If a data set is rationalizable by a variational preference relation,

we will say that the dataset set is risk-neutral variational-rationalizable.

A special case of variational preference is maxmin: A preference relation is

risk-neutral maxmin if there is a closed and convex set Π ⊆ ∆(S) for which

for each π ∈ Π and all s ∈ S, πs > 0, such that the utility function

inf
π∈Π

π · x

1Arrow-Debreu prices make sense in a setting of complete markets and absence of arbitrage.
Arrow-Debreu prices can then be recovered from asset prices. We also imagine experimental
data from markets in which Arrow-Debreu securities are traded (Hey and Pace, 2014; Ahn
et al., 2014; Bayer et al., 2012).
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represents �. If a data set is rationalizable by a risk neutral maxmin pref-

erence relation, we will say that the dataset set is (risk-neutral) maxmin-

rationalizable.

A utility u : RS → R is constant absolute risk aversion (CARA) if there is

a > 0 and π ∈ ∆(S) for which for all s ∈ S, πs > 0, and

u(x) =
∑

s∈S

πs (− exp(−ax)) .

Note that CARA is a special case of subjective expected utility.

A utility u : RS → R is constant relative risk aversion (CRRA) if there is

a ∈ (0, 1) and π ∈ ∆(S) for which for all s ∈ S, πs > 0, and

u(x) =
∑

s∈S

πs

(

x1−a

1− a

)

.

If a data set is rationalizable by a CARA (CRRA) utility, we will say that

the dataset set is CARA (CRRA) rationalizable.

4. Variational preferences

We present the results on variational and maxmin rationalizability as The-

orems 1 and 4. In each case, the model in question assumes a linear utility

index: so the model captures ambiguity aversion but risk neutrality. These

results beg the question of the empirical content of risk aversion together with

ambiguity aversion. In Section 6 we present a result on maxmin utility with

risk aversion. It is restricted to environments with two states.

1. Theorem. The following statements are equivalent:

(1) Dataset D is rationalizable by a locally nonsatiated, translation invari-

ant preference.

(2) Dataset D is rationalizable by a continuous, strictly increasing, concave

utility function satisfying the property u(x+ (c, . . . , c)) = u(x) + c.

(3) Dataset D is risk-neutral variational-rationalizable.

(4) For every l = 1, . . . ,M , and every sequence {kl} ⊆ {1, . . . , K},

M
∑

l=1

pkl

‖pkl‖1
· (xkl+1 − xkl) ≥ 0,

where addition is modulo M , as usual.
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Note that the equivalence between (2) and (3) is due to Maccheroni et al.

(2006).

The equivalence of (1) and (2) implies that if data are rationalizable by a

translation invariant preference, they are also rationalizable by a risk-neutral

variational preference which is ambiguity averse, in the sense of Gilboa and

Schmeidler (1989). Thus, owing to linear pricing, ambiguity aversion adds no

empirical content to the variational model.

2. Remark. The preceding result can be generalized. Suppose we were inter-

ested in the testable implications of preferences which are β-translation invari-

ant, for some β ≥ 0, β 6= 0. That is, we want to know whether for all x, y,

we have x � y if and only if for all t, x + tβ � y + tβ. Define the seminorm

‖x‖β1 =
∑

i |βixi|. Then it is an easy exercise to verify that the testable impli-

cations of β-translation invariance are given by equation (4), replacing ‖ · ‖1

with ‖ · ‖β1 .

3. Remark. The test in (4) is related to cyclic monotonicity. This is similar to

the test given by Brown and Calsamiglia (2007) for quasilinear preferences (and

to a result in (Rockafellar, 1997) characterizing superdifferentials of concave

functions).

We now turn our attention to maxmin preferences.

We say that a function u : RS → R is linearly homogeneous if for all x ∈ RS

and all α > 0, we have u(αx) = αu(x).

4. Theorem. The following statements are equivalent:

(1) Dataset D is rationalizable by a locally nonsatiated, homothetic and

translation invariant preference.

(2) Dataset D is rationalizable by a continuous, strictly increasing, linearly

homogeneous and concave utility function satisfying the property that

u(x+ (c, . . . , c)) = u(x) + c.

(3) Dataset D is risk-neutral maxmin-rationalizable.

(4) For every k and l,

pk

‖pk‖1
· xk ≤

pl

‖pl‖1
· xk.

The equivalence between (2) and (3) is due to Gilboa and Schmeidler (1989).

Here we prove it through an application of Theorem 1.
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5. CARA and CRRA

The previous section considers translation invariance and homotheticity as

general properties of preferences in choice under uncertainty. Here we focus

on the case of subjective expected utility. So we consider models in which the

agent has a single prior over states, and maximizes expected utility. The prior

is unknown though, and must be inferred from her choices. In the subjective

expected utility case, translation invariance gives rise to CARA preferences,

and homotheticity to CRRA.

5. Theorem. A dataset D is CARA rationalizable if and only if there is α∗ > 0

such that (1) holds; and CRRA rationalizable if and only if there is α∗ ∈ (0, 1)

such that (2) holds.

α∗(xk
t − xk

s + xk′

s − xk′

t ) = log

(

pks
pkt

pk
′

t

pk′s

)

(1)

α∗ log

(

xk
t

xk
s

xk′

s

xk′
t

)

= log

(

pks
pkt

pk
′

t

pk′s

)

(2)

The conditions in Theorem 5 may look like existential conditions: essentially

Afriat inequalities. Afriat inequalities are indeed the source of equations (1)

and (2), as evidenced by the proof of Theorem 5, but note that the statements

are equivalent to non-existential statements: Equation (1) says that when

(xk
t − xk

s + xk′

s − xk′

t ) 6= 0,

log(p
k
s

pkt

pk
′

t

pk
′

s

)

(xk
t − xk

s + xk′
s − xk′

t )

is independent of k, t, k′ and s; and that when (xk
t − xk

s + xk′

s − xk′

t ) = 0 then

log(p
k
s

pkt

pk
′

t

pk
′

s

) = 0. Similarly for equation (2).

It is worth pointing out that, except in the case when for all observations,

all prices are equal, and consumption of all goods are equal, equation (1) can

have only one solution. Hence, risk preferences are uniquely identified.

The next corollary also shows that beliefs are identified. Recall that a CARA

utility is defined by a pair (a, π), with a > 0 and π ∈ ∆(S).

6. Corollary. If (a, π) and (a′, π′) define CARA utilities that rationalize D,

then (a, π) = (a′, π). Furthermore, a = a′ coincide with the unique solution

to (1). Similarly for CRRA rationalizability and (2).



8 CHAMBERS, ECHENIQUE, AND SAITO

6. Risk averse maxmin with two states

Theorem 4 is about risk neutral maxmin. Here we turn to maxmin with risk

aversion. A preference relation is maxmin if there is a closed and convex set

Π ⊆ ∆(S), where for each π ∈ Π and each s ∈ S, πs > 0, and a concave utility

u : RS → R such that the utility function

inf
π∈Π

∑

s=1,2

πsu(xs)

represents �. If a data set is rationalizable by a maxmin preference relation,

we will say that the dataset set is maxmin-rationalizable.

Let K0 be the set of all k such that xk
1 = xk

2. Let K1 be the set of all k

such that xk
1 < xk

2, and K2 be the set of all k such that xk
1 > xk

2. Note that

K = K0 ∪K1 ∪K2.

Say that a sequence of pairs (xki
si
, x

k′i
s′
i
)ni=1 is balanced if each k appears as ki

(on the left of the pair) the same number of times it appears as k′
i (on the

right).

Given a sequence of pairs (xki
si
, x

k′i
s′i
)ni=1, consider the following notation: Let

Il,s = {i : ki ∈ Kl and si = s}, I ′l,s = {i : k′
i ∈ K ′

l and s′i = s}, for l = 0, 1, 2

and s = 1, 2.

Strong Axiom of Revealed Maxmin Expected Utility (SARMEU):

For any balanced sequence of pairs (xki
si
, x

k′i
s′i
)ni=1 in which

(1) xki
si
> x

k′i
s′i

for all i;

(2) |I0,1|+ |I1,1| −
∣

∣I ′1,1
∣

∣ =
∣

∣I ′0,1
∣

∣+
∣

∣I ′2,1
∣

∣− |I2,1| ≤ 0

The product of prices satisfies that

n
∏

i=1

pkisi

p
k′i
s′i

≤ 1.

7. Theorem. A dataset is maxmin rationalizable if and only if it satisfies

SARMEU.

6.1. Discussion. Echenique and Saito (2015) show that the following axiom

characterizes rationalizability by subjective expected utility.

Strong Axiom of Revealed Subjective Expected Utility (SARSEU):

For any balanced sequence of pairs (xki
si
, x

k′i
s′i
)ni=1 in which
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(1) xki
si
> x

k′i
s′i

for all i;

(2) |I0,1|+ |I1,1|+ |I2,1| =
∣

∣I ′0,1
∣

∣+
∣

∣I ′1,1
∣

∣+
∣

∣I ′2,1
∣

∣

The product of prices satisfies that

n
∏

i=1

pkisi

p
k′i
s′i

≤ 1.

Since S = {1, 2}, condition (2) of SARSEU is equivalent to the condition

that s = 1 appears as si (on the left of the pair) the same number of times it

appears as s′i (on the right). That is, |I0,1|+|I1,1|+|I2,1| counts all i with si = 1

and
∣

∣I ′0,1
∣

∣ +
∣

∣I ′1,1
∣

∣ +
∣

∣I ′2,1
∣

∣ counts all i with s′i = 1. When these quantities are

equal we obtain that the number of times s = 2 appears as si also equals the

number of times it appears as s′i. The reason is that n−(|I0,1|+ |I1,1|+ |I2,1|) =

|I0,2|+ |I1,2|+ |I2,2|; and similarly for the sum of I ′l,s.
2

Inspection of SARSEU and SARMEU yields the following

8. Proposition. If a dataset satisfies SARSEU then it satisfies SARMEU.

For a dataset to be maxmin rationalizable, but inconsistent with subjective

expected utility, it needs to contain a sequence in the conditions of SARSEU in

which |I0,1|+|I1,1|+|I2,1| =
∣

∣I ′0,1
∣

∣+
∣

∣I ′1,1
∣

∣+
∣

∣I ′2,1
∣

∣, but where |I0,1|+|I1,1|−
∣

∣I ′1,1
∣

∣ >

0.

As we have emphasized, the result in Theorem 7 is for two states. There

are two simplifications afforded by the assumption of two states, and the two

are crucial in obtaining the theorem. The first is that with two states there

are only two extreme priors to any set of priors. With the assumption that u

is monotonic, one can know which of the two extremes is relevant to evaluate

any given act.3 The second simplification is a bit harder to see, but it comes

from the fact that one can normalize the probability of one state to be one

and only keep track of the probability of the other state. Then the property of

being an extreme prior carries over to the probability of the state that is left

“free.”4

2By the same reason, condition (2) of SARSEU is equivalent to the condition that |I0,2| +
|I2,2|+ |I1,2| =

∣

∣I ′0,2
∣

∣+
∣

∣I ′2,2
∣

∣+
∣

∣I ′1,2
∣

∣.
3This would also be true in the model of Schmeidler (1989), whose ambiguity averse coun-
terpart is equivalent to MEU in the case of two states.
4This can be seen in the proof of Lemma 9 when we go from π̄ ≥ π to µ̄1 ≥ µ

1
.
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7. Proofs

7.1. Proof of Theorem 1. That (3) =⇒(1) is obvious. We shall first prove

that (1) =⇒(4)

Suppose, towards a contradiction, D is a dataset satisfying (1) but not (4).

Then we have a cycle
∑M

l=1
pkl

‖pkl‖1
· (xkl+1 − xkl) < 0. Let us without loss

assume the sequence is x1, . . . , xM so as to avoid cumbersome notation. Let

Z =
∑M

l=1
pl

‖pl‖1
· (xl+1 − xl) < 0.

Define a new sequence (y1, . . . , yM) inductively. Let y1 = x1, and let yk =

xk+(ck, . . . , ck) where ck is chosen so that pk

‖pk‖1
· (yk+1−yk) = Z

M
. Specifically,

c1 = 0 and

ck+1 = ck +
Z

M
−

pk

‖pk‖1
· (xk+1 − xk)

for k = 1, . . . ,M − 1. Let qk = pk

‖pk‖1
and consider the dataset (qk, yk), k =

1, . . .M .

The original dataset is rationalizable by some locally non-satiated and trans-

lation invariant preference �. It is easy to see that the same preference

rationalizes the dataset (qk, yk). Indeed, if qk · yk ≥ qk · y then pk · xk ≥

pk · (y− (ck, . . . , ck)), by definition of yk and qk. So xk � (y− (ck, . . . , ck)), and

thus yk � y by translation invariance of �.

Observe that

M−1
∑

k=1

qk · (yk+1 − yk) + qM · (y1 − yM)

=
M
∑

k=1

pk

‖pk‖1
· (xk+1 − xk) +

M
∑

k=1

pk

‖pk‖1
· ((ck+1, . . . , ck+1)− (ck, . . . , ck))

=

M
∑

k=1

pk

‖pk‖1
· (xk+1 − xk) +

M
∑

k=1

(
∑

s∈S p
k
s)(c

k+1 − ck)

‖pk‖1

=

M
∑

k=1

pk

‖pk‖1
· (xk+1 − xk) (∵ ‖pk‖1 =

∑

s∈S

pks)

= Z (∵ Definition of Z),

and that qk·(yk+1−yk) = Z/M for k = 1, . . . ,M−1. Therefore, qM ·(y1−yM) =

Z/M . In particular, qk · (yk+1 − yk) = Z/M < 0 for k = 1, . . . ,M (mod M).
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Thus yk ≻ yk+1 as (qk, yk) is rationalizable by � and � is locally nonsatiated.

This contradicts the transitivity of �.

Now we show that (4) =⇒(2). Let x ∈ RS. Let Σx be the set of all

subsequences {kl}
M
l=1 ⊆ {1, . . . , K} for which k1 = 1 and define xkM+1 = x. By

(4), if {kl}
M
l=1 ∈ Σx has a cycle (meaning that kl = kl′ for l, l′ ∈ {1, . . . ,M}

with l 6= l′), then there is a shorter sequence {kj}
M ′

j=1 ∈ Σx with

M ′

∑

j=1

pkj

‖pkj‖1
· (xkj+1 − xkj) ≤

M
∑

l=1

pkl

‖pkl‖1
· (xkl+1 − xkl).

Therefore, u(x) = inf{
∑M

l=1
pkl

‖pkl‖1
· (xkl+1 − xkl) : {kl}

M
l=1 ∈ Σx} is well defined,

as the infimum can be taken over a finite set.

That u : RS → R defined in this fashion is concave, strictly increasing and

continuous is immediate. To see that it rationalizes the data, suppose that

pk · xl ≤ pk · xk. Then pk

‖pk‖1
· xl ≤ pk

‖pk‖1
· xk. It is clear then by definition that

u(xl) ≤ u(xk) + pk

‖pk‖1
· (xl − xk) ≤ u(xk).

Finally, to show that u(x) + (c, . . . , c)) = u(x) + c, note that for any pk,

we have pk

‖pk‖1
· (x + (c, . . . , c)) = c + pk

‖pk‖1
· x. The result then follows by

construction.

We end the proof by showing that (2) =⇒(3) Let u : RS → R be as in the

statement of (2). Define the concave conjugate of u by

f(π) = inf{π · x− u(x) : x ∈ RS}

= inf{π · x+ cπ · 1− u(x)− c : x ∈ RS, c ∈ R}

= inf{π · x− c(1− π · 1)− u(x) : x ∈ RS, c ∈ R},

where the second equality uses that u(x+(c, . . . , c)) = u(x)+c. Now note that

f(π) = −∞ if (1 − π · 1) 6= 0. Note also that the monotonicity of u implies

that f(π) = −∞ if there is s such that πS < 0. One can also show that there

is π ∈ ∆(S) for which f(π) ∈ R.5 Finally, observe that by strict monotonicity,

5For example, take π to support {z ∈ R
S : u(z) ≥ 0} at 0. We claim that f(π) = 0.

Suppose by means of contradiction that there is x ∈ R
S for which π · x < u(x). Observe

that π supports {z ∈ R
S : u(z) ≥ π · x} at the action y which returns π · x in each state.

Observe that u(z) > π · x implies π · z > π · x, by continuity of u and definition of the
supporting hyperplane; that is, {z ∈ R

S : u(z) ≥ π · x} ⊆ {z ∈ R
S : π · z ≥ π · x} implies

{z ∈ R
S : u(z) > π · x} ⊆ {z ∈ R

S : π · z > π · x} as the latter sets are the interiors of the
former. Therefore, if u(x) > π · x, we conclude π · x > π · x, a contradiction.
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if there is s ∈ S for which πs = 0, then f(π) = −∞. Hence we can consider

the domain of f to be a subset of ∆(S). Moreover, f(π) < +∞ implies for all

s ∈ S, πs > 0.

Now since u is continuous, it is a standard application of the separating

hyperplane theorem to establish that u(x) = infπ∈∆(S) π · x − f(π). Since u

rationalizes the dataset, the dataset is variational rationalizable.

7.2. Proof of Theorem 4. It is obvious that (3) =⇒(2) and that (2) =⇒(1).

Hence, to show the theorem, it suffices to show that (4) implies (3) and that

(1) implies (4).

For a dataset D, let πk = pk

‖pk‖1
. It is easy to see that (4) =⇒(3). Let

Π be the convex hull of {πk : k = 1, . . . , K}. Then it is immediate that

u(x) = minπ∈Π π · x rationalizes D. Moreover, for each π ∈ Π and all s ∈ S,

πs > 0 because πk
s > 0 for all s ∈ S and k ∈ K.

We prove that (1) =⇒(4). Suppose that D satisfies (1) but not (4). Then

there are k and l for which πl · xk < πk · xk. Let � be a preference relation as

stated in (1). By homotheticity of �, for any scalar θ > 0, � rationalizes the

data D′ ≡ {(xj, πj) : j = 1, . . . , K} ∪ {(θxl, πl)}. To see this, observe that if

πl ·x ≤ πl · θxl, then πl · θ−1x ≤ πlxl, so that xl � θ−1 ·x, and by homogeneity,

θxl � x. Now, for θ > 0 sufficiently small, πl · xk < πk · xk implies that

xk · (πl − πk) + θxl · (πk − πl) < 0.

So either xk · (πl − πk) < 0 or θxl · (πk − πl) < 0. Then the dataset D′ violates

(4) in Theorem 1, contradicting the fact that it is rationalized by �, which is

assumed to be translation invariant.

7.3. Proof of Theorem 5. The idea in the proof is to solve the first-order

conditions for the unknown terms. Consider first the case of CARA. Let

π ∈ ∆(S) and α > 0 rationalize D. Then we know that xk maximizes
∑

s πs (− exp(−αxs)) subject to pk ·x ≤ pk ·xk. By considering the Lagrangean

and the first order conditions, we may conclude that for every s, t ∈ S and

every k ∈ {1, . . . , K}, we have

πs exp(−αxk
s)

pks
=

πt exp(−αxk
t )

pkt
.
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Conclude that pksπt

pkt πs
= exp(−α(xk

s − xk
t )). By taking logs, the system becomes:

(3) log(πs)− log(πt) + α(xk
t − xk

s) = log(pks)− log(pkt ).

In the case of CRRA, the existence of a rationalizing π and parameter α

imply a first-order condition of the form

(4) log(πs)− log(πt) + α log(xk
t /x

k
s) = log(pks)− log(pkt ).

We can denote log(πs) by zs in equations (3) and (4). Thus we obtain that

D is rationalizable if and only if there exist zs ∈ R and α > 0 such that the

following equation is solved for all s, t, k with s 6= t:

zs − zt + α(ykt − yks ) = log(pks)− log(pkt ),

where ykt = xk
t for CARA rationalizability, and ykt = log xk

t for CRRA ratio-

nalizability.

Now the necessity of the axioms is obvious. Let k 6= k′, then

α(ykt − yks )− log(pks/p
k
t ) = zs − zt = α(yk

′

t − yk
′

s )− log(pk
′

s /p
k′

t )

for any s and t. Thus

α(ykt − yks − yk
′

t + yk
′

s ) = log(
pks
pkt

pk
′

t

pk′s
).

So (1) is satisfied for the case of CARA rationalizability, and (2) is satisfied

for the case of CRRA rationalizability.

To prove sufficiency, let

dp(s, t, k) = log(pks/p
k
t )

dx(s, t, k) = yks − ykt .

Let α∗ be such that for all k, k′, s, s′ and t,

α∗(ykt − yks − yk
′

t + yk
′

s ) = log(
pks
pkt

pk
′

t

pk′s
).

Then in particular, for all k, k′, s, s′ and t,

(5) dp(s, t, k) + α∗dx(s, t, k) + dp(t, s, k′) + α∗dx(t, s, k′) = 0.
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Note also that

dp(s, t, k) + dp(t, s′, k) + dp(s′, s, k)

+α∗(dx(s, t, k) + dx(t, s′, k) + dx(s′, s, k)) = 0.
(6)

Fix s0 ∈ S and let zs0 ∈ R be arbitrary. For any s ∈ S, define zs by

zs = zs0 + α∗dx(s0, s, k) + dp(s, s0, k),

for some k. In fact, by equation (5), this definition is independent of k because

dp(s, s0, k) + α∗dx(s, s0, k) = dp(s, s0, k
′) + α∗dx(s, s0, k

′).

Given this definition, note that

zs − zt = α∗(dx(s0, s, k)− dx(s0, t, k)) + dp(s, s0, k)− dp(t, s0, k)

= α∗(dx(s0, s, k)− dx(s0, t, k)) + dp(s, s0, k)− dp(t, s0, k)

+ dp(s, t, k) + dp(t, s0, k) + dp(s0, s, k)

+ α∗(dx(s, t, k) + dx(t, s0, k) + dx(s0, s, k))

= dp(s, t, k) + α∗dx(s, t, k),

where the second equality uses equation (6).

Hence, with the constructed (zt)t∈S we have

zs − zt + α∗(ykt − yks ) = log(pks/p
k
t ),

for all s, t, and k. The first-order conditions for rationalizability are therefore

satisfied.

7.4. Proof of Theorem 7.

9. Lemma. A dataset D is maxmin rationalizable if and only if there are vks ,

λk, s = 1, 2, k = 1, . . . , K, and π̄, π ≥ 0 with π̄ ≥ π > 0, such that: for all k

such that xk
s 6= xk

s′,

πvk1 = λkpk1

vk2 = λkpk2,
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where π = π̄ when xk
1 < xk

2 and π = π when xk
1 > xk

2; for all k such that

xk
s = xk

s′

πvk1 ≥ λkpk1

πvk1 ≤ λkpk1

vk2 = λkpk2.

The numbers also satisfy that vks ≤ vk
′

s′ when xk
s > xk′

s′ .

Proof. To prove sufficiency, let vks , λ
k, s = 1, 2, k = 1, . . . , K, and π̄, π ≥ 0

with π̄ ≥ π be as in the statement of the lemma. Define µ̄, µ ∈ ∆(S) as follows.

Let µ̄1 = π̄/(1+ π̄), µ̄2 = 1/(1+ π̄), and µ
1
= π/(1+π), µ

2
= 1/(1+π). Since

π̄ ≥ π,

µ̄1 ≥ µ
1
and µ̄2 ≤ µ

2
.

Define θk = λk/(1 + π̄) if xk
1 < xk

2 and θk = λk/(1 + π) if xk
1 > xk

2. Then we

have that µsv
k
s = θkpks , with µs = µ̄s when xk

1 < xk
2; and µs = µ

s
when xk

1 > xk
2.

Now consider k such that xk
1 = xk

2. By the assumption, there exists πk such

that π ≥ πk ≥ π such that πvk1 = λkpk1. Let µk
1 = π/(1 + π), µk

2 = 1/(1 + π),

and θk = λk/(1 + π). Since π ≥ π ≥ π,

µ1 ≡
π

1 + π
≥

πk

1 + πk
≥

π

1 + π
≡ µ

1
.

Hence, there exists αk ∈ [0, 1], µk
1 = αkµ1 + (1− αk)µ

1
. Then, µk

2 = 1 − µk
1 =

αk(1− µ1) + (1− αk)(1− µ
1
) = αkµ2 + (1− αk)µ

2
.

Given the numbers vks it is now routine to define a correspondence ρ such that

if x ≤ x′, y ∈ ρ(x) and y′ ∈ ρ(x′) then y ≥ y′ > 0, and with ρ(xk
s) ∋ vks . This

gives a concave and increasing function u with ∂u(c) = ρ(x). So θkpks
µs

∈ ∂u(xk
s)

for all s and k such that xk
1 6= xk

2. Moreover, for all k such that xk
1 = xk

2

(θkpk1, θ
kpk2) ∈ co

{

(

µ1∂u(x
k
1), µ2∂u(x

k
2)
)

,
(

µ
1
∂u(xk

1), µ2
∂u(xk

2)
)

}

.

Hence the first and second order conditions are satisfied for maxmin rational-

ization.

We omit the proof of necessity. �

We will define matrices A, B, E such that there exist numbers {vks}, {λ
k}, π̄,

π satisfying the conditions in Lemma 9 if and only if there exists a solution x

to the system of inequalities A · x = 0, B · x ≥ 0 and E · x > 0.
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Let A be a matrix with 2K + 2 + K + 1 columns. The first 2K columns

are labeled with a different pair (k, s). The next 2 columns are labeled π̄ and

π. The next K columns are labeled with a k ∈ {1, . . . , K}. Finally the last

column is labeled p.

For each (k, 2) with k ∈ K0, A has a row with all zero entries with the

following exception. It has a 1 in the column labeled (k, s), among the first

group of 2K columns. It has a −1 in the column labeled k. In the column

labeled p it has − log(pks).

For each (k, s) with k ∈ K1, A has a row with all zero entries with the

following exception. It has a 1 in the column labeled (k, s), among the first

group of 2K columns. It has a −1 in the column labeled k. In the column

labeled p it has − log(pks). Finally, it has a 1 in the column labeled π̄ if and

only if if s = 1. For each (k, s) with k ∈ K2, A has a row defined as above.

The only difference is that when s = 1 then it has a 1 in the column labeled π

instead of having a 1 in the column labeled π̄.
Matrix A looks as follows:





















(1,1) ··· (k,s) ··· (K,S) π̄ π 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...

(k,s)∈(K0,2) 0 · · · 1 · · · 0 0 0 0 · · · −1 · · · 0 − log pks
(k,s)∈(K1,1) 0 · · · 1 · · · 0 1 0 0 · · · −1 · · · 0 − log pks
(k,s)∈(K2,1) 0 · · · 1 · · · 0 0 1 0 · · · −1 · · · 0 − log pks

...
...

...
...

...
...

...
...

...





















Let B be a matrix with the same number of columns as A. The columns of
B are labeled like those of A. For each (k, 1) with k ∈ K0, B has two rows. In
the first row, B has a row with all zero entries with the following exception.
It has a 1 in the column labeled (k, s), among the first group of 2K columns.
It has a 1 in the column labeled π̄. It has a −1 in the column labeled k. In
the column labeled p it has − log(pks). In the second row, B has a row with all
zero entries with the following exception. It has a −1 in the column labeled
(k, s), among the first group of 2K columns. It has a −1 in the column labeled
π. It has a 1 in the column labeled k. In the column labeled p it has log(pks).
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This first part of matrix B looks as follows:















(1,1) ··· (k,s) ··· (K,S) π̄ π 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...

(k,s)∈(K0,1) 0 · · · 1 · · · 0 1 0 0 · · · −1 · · · 0 − log pks
(k,s)∈(K0,1) 0 · · · −1 · · · 0 0 −1 0 · · · 1 · · · 0 log pks

...
...

...
...

...
...

...
...

...















In addition, B has a row for each pair (xk
s , x

k′

s′ ) with xk
s > xk′

s′ . The row for
xk
s > xk′

s′ has all zeroes except for a 1 in column (k′, s′) and a −1 in column
(k, s). Finally, B has one more row. This row as a 1 in the column for π̄ and
a −1 in the column for π. This second part of matrix B looks as follows:















(1,1) ··· (k,s) ··· (k′,s′) ··· (K,S) π̄ π 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...
...

xk

s
>xk

′

s′
0 · · · −1 · · · 1 · · · 0 0 0 0 · · · 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...

π̄≥π 0 · · · 0 · · · 0 · · · 0 1 −1 0 · · · 0 · · · 0 0















Let E be a matrix with the same number of columns as A, labeled as above,

and a single row. The row has all zeroes except for a 1 in column p.

By Lemma 9, there is no rationalizing maxmin preference if and only if there

is no solution to the system of inequalities A · x = 0, B · x ≥ 0, and E · x > 0.

Suppose that all log(pks) are rational numbers. We shall use the following

version of the Theorem of the Alternative, which can be found as Theorem

1.6.1 in (Stoer and Witzgall, 1970).

10. Lemma. Let A be an m × n matrix, B be an l × n matrix, and E be an

r×n matrix. Suppose that the entries of the matrices A, B, and E belong to a

commutative ordered field F. Exactly one of the following alternatives is true.

(1) There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u ≫ 0.

(2) There is η ∈ Fm, θ ∈ Fl, and γ ∈ Fr such that η ·A+ θ ·B+ γ ·E = 0;

θ ≥ 0 and γ > 0.

Then the non-existence of a solution to the system A · x = 0, B · x ≥ 0 and

E · x > 0 is equivalent to the existence of integer vectors η, θ and γ such that

θ ≥ 0, γ > 0, and η · A+ θ · B + γE = 0.
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For a matrix D with 2K +2+K + 1 columns, let D1 denote the submatrix

corresponding to the first 2K columns, D2 correspond to the next 2, D3 to the

next K, and D4 to the last column. Note that, by construction of A, B and

E, η · A + θ · B + γE = 0 implies that η · A1 + θ · B1 = 0, η · A2 + θ · B2 = 0,

η ·A3 + θ ·B3 = 0, η ·A4 + θ ·B4 + γ = 0. In fact, we can without loss assume

that η, θ and γ take values of −1, 0 or 1. (This assumption is without loss

because we can replace each row of matrices A, B and E with as many copies

as indicated by the corresponding vector η, θ or γ.)

From the existence of such vectors it follows that we can obtain a sequence

(xki
si
, x

k′i
s′i
)ni=1 with xki

si
> x

k′i
s′i
. The source of each pair (xki

si
, x

k′i
s′i
) is that the column

(ki, si) of A is multiplied by η(ki,si) > 0 and the column (k′
i, s

′
i) of A is multiplied

by η(k′i,s′i) < 0. The vector η must then have η(ki,si) > 0 and η(k′i,s′i) > 0, with a

−1 in the first column and a 1 in the second.

We shall prove that the sequence (xki
si
, x

k′i
s′i
)ni=1 satisfies the properties stated

in the axiom.

Firstly, η ·A3 + θ ·B3 = 0 means that for each k, the number of is for which

k = ki equals the number of is for which k = k′
i.

Secondly, η · A2 + θ ·B2 = 0 implies that:
∑

k∈K1

η(k,1) +
∑

k∈K0

θ(k,1) + θπ≥π = 0

∑

k∈K2

η(k,1) −
∑

k∈K0

θ′(k,1) − θπ≥π = 0,

where θπ≥π is the nonnegative weight on the row associated with π ≥ π; θ(k,1)

and θ′(k,1) are the nonnegative weights on the two rows associated with (k, 1)

with k ∈ K0. (θ(k,1) and θ′(k,1) corresponds to the first row and the second row,

respectively). Note that
∑

k∈K1

η(k,1) = |{i : ki ∈ K1, s = 1}| − |{i : k′
i ∈ K1, s = 1}| ≡ |I1,1| −

∣

∣I ′1,1
∣

∣ ,

∑

k∈K2

η(k,1) = |{i : ki ∈ K2, s = 1}| − |{i : k′
i ∈ K2, s = 1}| ≡ |I2,1| −

∣

∣I ′2,1
∣

∣ ,

∑

k∈K0

θ(k,1) = |{i : ki ∈ K0, s = 1}| ≡ |I0,1| ,

∑

k∈K0

θ′(k,1) = |{i : k′
i ∈ K0, s = 1}| ≡

∣

∣I ′0,1
∣

∣ .
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Hence,

|I1,1| −
∣

∣I ′1,1
∣

∣ + |I0,1| =
∣

∣I ′2,1
∣

∣− |I2,1|+
∣

∣I ′0,1
∣

∣ ≤ 0.

Therefore the sequence (xki
si
, x

k′i
s′i
)ni=1 satisfies the second property stated in the

axiom. Finally, since η · A4 + θ ·B4 + γ = 0,

0 > −γ

= η · A4 + θ ·B4

=
∑

(k,s)∈(K0,2)∪(K1∪K2,1)

η(k,s)(− log pks) +
∑

k∈K0

θ(k,1)(− log pk1) +
∑

k∈K0

θ′(k,1) log p
k
1

=

n
∑

i=1

log
p
k′i
s′i

pkisi

Hence
n
∏

i=1

pkisi

p
k′i
s′i

> 1.

The above proof assumes that the log of prices is rational. The proof of the

theorem follows along the same lines as Echenique and Saito (2015). Specifi-

cally, we have shown the following

11. Lemma. If {(xk, pk)} is a dataset satisfying SARMEU, in which log pk ∈ Q

for all k, then the dataset is maxmin rationalizable.

One can then prove the following

12. Lemma. If {(xk, pk)} is a dataset that satisfies SARMEU, and ε > 0 then

there is a collection of prices {qk} such that log qk ∈ Q, ‖pk − qk‖ < ε, and

the dataset {(xk, qk)} satisfies SARMEU.

The proof of Lemma 12 is exactly as in (Echenique and Saito, 2015).

Lemma 11 establishes the result in datasets in which the log of prices is

rational. Consider an arbitrary data set {(xk, pk)}, with prices that may not

be rational.

Suppose towards a contradiction that the dataset satisfies SARMEU, but

that it is not maxmin rational. Specifically then, by Lemma 9, suppose that

there is no solution to the system A · x = 0, B · x ≥ 0 and E · x > 0. Then

by Lemma 10 there are real vectors η, θ and γ such that θ ≥ 0, γ > 0, and

η · A+ θ · B + γE = 0.
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Let {qk} be vectors of prices such that the dataset {(xk, qk)} satisfies SARMEU

and log qks ∈ Q for all k and s. (Such {qk} exists by Lemma 12.) Furthermore,

the prices qk can be chosen arbitrarily close to pk. Construct matrices A′, B′,

and E ′ from this dataset in the same way as A, B, and E above. Note that

only the prices are different in {(xk, qk)} compared to {(xk, pk)}. So E ′ = E,

B′
i = Bi and A′

i = Ai for i = 1, 2, 3. Since only prices qk are different in this

dataset, only A′
4 and B′

4 may be different from A4 and B4, respectively.

By Lemma 12, we can choose prices qk such that |η ·A′
4 + θ ·B′

4 − (η ·A4 +

θ ·B4)| < γ/2. We have shown that η ·A4+ θ ·B4 = −γ, so the choice of prices

qk guarantees that η · A′
4 + θ · B′

4 < 0. Let γ′ = −η · A′
4 − θ · B′

4 > 0.

Note that θ · A′
i + η · B′

i + γ′Ei = 0 for i = 1, 2, 3. Hence

η · A′
4 + θ · B′

4 + γ′E4 = η · A′
4 + θ · B4 + γ′ = 0.

We also have that η ≥ 0 and γ′ > 0. Therefore θ, η, and γ′ exhibit a solution

to the dual system for dataset {(xk, qk)}, a contradiction with Lemma 11.
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