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Abstract

Response time is the time an agent needs to make a decision. One fundamental

finding in psychology and neuroscience is that, in a binary choice, there is a mono-

tonic relationship between the response time and the difference between the utilities

of the two options. We consider situations in which utilities are not observed, but

rather inferred from revealed preferences: meaning they are inferred from subjects’

choices. Given data on subjects’ choices, and the time to make those choices, we

give conditions on the data that characterize the property that response time is a

monotonic function of utility differences.

1 Introduction

Response time refers to the time an agent needs to make a decision. The relationship
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between utility and response time has been studied extensively in psychology and neuro-

science. (See Luce (1986) and Krajbich et al. (2014) for surveys.)

Consider a binary choice experiment. We consider representations where there is

a monotonic relation between response time and the utility difference between the two

options. The relation can be monotone decreasing, meaning that subjects’ response time

is shorter as the difference between the utility of the two options becomes larger, or

monotone increasing. A monotone decreasing relation is observed in many binary choice

experiments in psychology and neuroscience, 1 The monotone decreasing relation can

be explained by an agent that is learning the utility differences, so that a large utility

difference can be detected more quickly. On the other hand, one can envision a monotone

increasing relation when the subject knows the utility difference in advance, but she does

not know its sign. The subject may then decide quickly when the difference is small. It

simply matters less if she gets the choice wrong.

In either case, decreasing or increasing, there is a monotonic relationship between sub-

jects’ response and the difference between the utility of the two options. The purpose of

this paper is to provide a formal axiomatic model which describes such monotonic rela-

tionships. Our axioms give conceptual foundations for the relation between response time

and utility, when utility is not directly observable, and also provide revealed preference

tests that can be used on experimental data.

In our model, given is data on agents’ choices, and the time taken to make them.

We give conditions that describe when data is consistent with the theory that response

time is monotonic in utility differences. In a binary choice between x and y, if the agent

chooses x over y, then t(x, y) denotes the response time which the agent needs to make

1This finding is based on having estimates of subjects’ values for the different options. In classical

economic environments, however, one has no access to such “psychometric” estimates of utility (indeed

the traditional position is to discourage economists from using them), and must infer utility from choices.
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the choice. We axiomatize the following response-time representation:

f(t(x, y)) = u(x)− u(y), (1)

where f is a monotonic function and u(x) > u(y). We first show an axiomatization

for the representation with strictly decreasing f . Then by flipping inequalities in our

axiomatization, we obtain an axiomatization of an alternative representation in which f

is strictly increasing.

Our representation with strictly decreasing f is consistent with several well-known

models in psychology and neuroeconomics. In psychology, Pieron’s law states that the

reaction time t to visual signal is monotonically decreasing in the intensity of the signal:

t = r0 + k
1

Iβ
,

where I is the intensity of the signal. (See figure 2a of Mansfield (1973), figure 3 of Kohfeld

(1971), and figure 5 of Kohfeld et al. (1981) for examples of evidence. See Luce (1986) for

a survey.) In neuroscience, experimenters have studied economic decision making such as

binary choice as in our paper. They use a stochastic model, Drift Diffusion Model (DDM)

proposed by Ratcliff (1978). DDM predicts that the average response time is decreasing

in the utility difference between the two options.

We present three results. First, under a richness assumption of the dataset, we first

show that a few simple axioms characterize the representation in (1). Those axioms

capture the monotonic relationship between the agent’s response time, and the difference

between the utility of the two options. For the case of decreasing (increasing) relationship,

Monotonicity states that if an agent chooses x over y and y over z (i.e., x ≻ y ≻ z), then

the response time for him to choose x over z should be shorter (resp. longer) than the

response time for him to choose x over y and the response time for him to choose y over

z (i.e., t(x, z) < (resp. >)t(x, y), t(x, z) < (resp. >)t(y, z)).

In second place we turn to finite data sets. Our richness assumption cannot be satis-

fied with finite data. We provide an axiomatization that is testable with a finite dataset.
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We show that Completeness and a stronger version of Monotonicity, which we call Com-

pensation, characterize the response-time representation. (Compensation also implies the

standard property of acyclicity commonly used in revealed preference analysis).

In third place, we further generalize the result by dropping Completeness because the

axiom may not be satisfied in many experimental designs (it is simply too onerous to

present subjects with all pairs of possible options). Then, we show that a stronger version

of Compensation alone characterizes the response-time representation. The axiom is easily

testable with experimental data.

Ours is the first paper to present an axiomatic study of response time with finite data.

Krantz et al. (1971) and Debreu (1958) are the closest precedents within the axiomatic

literature, but they assume infinite data and their results do not provide tests for finite

datasets. Krantz et al. (1971) provides a general version of our representation. We

use their main result to prove a version of our theorem (Theorem 1) under a rich data

assumption (see Section 3 for a detailed discussion).

Debreu (1958) studies a model of stochastic choice. His model states that p(a, b) ≥

p(c, d) if and only if u(a) − u(b) ≥ u(c) − u(d) for some function u, where p(x, y) is

the primitive probability that the agent chooses x over y. Given Debreu’s result, one

might think that one can characterize our representation by imposing Debreu’s axioms

on t(x, y), instead of p(x, y). However, this transformation does not work because the

axiomatization by Debreu (1958) crucially depends on the fact that p(x, y) + p(y, x) = 1.

This must of course be true for a stochastic choice function p, but it is not true for a

response time function t. We define t(x, y) only when the agent chooses x over y, and the

time t(x, y) can take any positive real value.

One could get around the problem using an isomorphism between Debreu’s and our

primitives. Doing us does, however, not yield any fruitful results. For example, one

could define Debreu’s primitive p from our response time data as follows: Choose T large

enough so that T > t(x, y) for any (x, y) ∈≻. Then define pT (x, y) = t(x, y)/T and

4



pT (y, x) = 1− (t(x, y)/T ) for any (x, y) ∈≻. Notice that the definition depends on T and

pT (x, y) 6= pT ′(x, y) whenever T 6= T ′.

The axiomatization by Debreu (1958) implies the following: There exists a response

time representation if there exists a positive number T such that pT satisfies Debreu’s

axioms. Such an axiomatization would not be desirable because whether the data satisfy

the axioms depends on the choice of T and, hence, it is difficult to interpret the axioms in

a meaningful way. For example, one of Debreu’s axioms is as follows: pT (x, y) ≤ pT (z, w)

if and only if pT (x, z) ≤ pT (y, w). Suppose that if the agent chooses x over y and z;

z over w; and w over y. Then the axiom requires that t(x, y) ≤ t(z, w) if and only if

t(x, z) ≤ T − t(w, y). It is obvious that whether the requirement is satisfied or not depends

on the choice of T . Moreover, one would need to find a T with which the requirement

holds for any x, y, z, w. Finding such a T is a purely computational exercise and conveys

little behavioral meaning.

Another precedent to our paper is Scott (1964). Scott considers a finite set X and a

quaternary relation D on X . He provides a condition on D under which there exists a

real-valued function f on x such that xyDzw if and only if f(x) − f(y) ≥ f(z) − f(w).

His condition is testable with finite data, although he does not study response time data.

Scott’s condition does not imply our axiom.

There are several non-axiomatic papers on response times in economics. These are

important contributions to the study of response time, but seek different purposes than

our paper. The purpose of our axiomatic study is to provide non-parametric tests of

response time models, and to provide a basic understanding of the qualitative features

behind response time models. The existing literature on response time in economics

has a different focus. Wilcox (1993) uses response times to evaluate decision cost in his

experiments. Rubinstein (2007) measures response times in his experiments on games,

and suggests that choices made instinctively require less response time than choices that

require the use of cognitive reasoning. Piovesan and Wengström (2009) experimentally
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show that egoistic subjects make faster decisions than subjects with social preferences.

In experiments on single-person decision problems, Rubinstein (2013) measures response

times to study mistakes and biases such as Allais’s paradox.

Chabris et al. (2009) measure response times in their experiments on intertemporal

choices. By assuming linear utility and a specific form of discounting function, they show

an inverse relationship between average response times and utility differences. They claim

that their evidence is consistent with the models of Gabaix et al. (2006). In the model

of Gabaix et al. (2006), an agent uses partially myopic option-value calculations to select

their next cognitive operation. More recently, Fudenberg et al. (2015) provide a model of

response time. They do not provide an axiomatization of their model, focusing instead

on which aspects of optimal sampling are implicitly assumed by the DDM model.

Some recent papers use response time to improve prediction rates. Clithero and Rangel

(2013) use response times to predict choices in single-person decision problems. Based on

DDM, they made predictions by using response times. Schotter and Trevino (2014) use

response times to predict threshold behavior in a simple global game experiment.

Finally, we mention an important limitation of our model. Typically response time

data are noisy and look random. Moreover, choices themselves can be random. In this

paper, we consider the axiomatization of deterministic choice as a first step. As future

research, it would be important to study the case of random choice.

2 Models

Let X be a set and let ≻⊂ X ×X ×R+ be the primitive that describes an agent’s choice

behavior. The meaning of (x, y, t) ∈≻ is that the agent chooses x over y, and that it takes

time t for him to make that decision. We denote this time t by t(x, y). (Notice we do

not use the notation t(y, x) unless y is chosen over x.) In this paper, we do not consider

indifferences. If we observe a choice of an agent between x and y, we can observe either

t(x, y) or t(y, x) but not both.
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We assume that for every x, y ∈ X there is at most one t ∈ R+ with (x, y, t) ∈≻. So

we simply write x ≻ y to denote (x, y, t) ∈≻. We denote by T the set of t ∈ R+ for which

there is x, y ∈ X such that (x, y, t) ∈≻.

In the following sections, we provide axiomatizations of the following representation

of ≻: for some utility function u : X → R and a monotonic function f : T → R such that

f(t(x, y)) = u(x)− u(y). (2)

We call the representation response-time representation.

3 Axioms for Rich Data

In this section, we consider rich data. We show that two intuitive axioms (Monotonicity

and Time-Transitivity) and weak order characterize the response-time representation,

under a “richness” condition. Moreover, we show that the response-time representation

has a strong uniqueness property. In this section, the set of outcomes, X , is infinite. In

the next section, we provide an axiomatization for finite data.

The first two axioms are standard.

Axiom 1. (Completeness): For any distinct x, y ∈ X, either x ≻ y or y ≻ x.

Note that the completeness of the strict preference means that we do not allow indif-

ferences.

Axiom 2. (Transitivity): For any x, y, z ∈ X, if x ≻ y and y ≻ z, then x ≻ z.

Our next axiom captures the monotonic relationship between response times and the

difference in the values of the two options. Consider three options x, y, z such that x ≻

y ≻ z. Then, given a utility representation, and a decreasing relation between utility and

response time, the difference u(x)− u(z) must be larger than the differences u(x)− u(y)

and u(y)− u(z). So the monotonically decreasing relationship implies that the response

time t(x, z) must be smaller than t(x, y) and t(y, z). Formally,
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Axiom 3. (Decreasing Monotonicity): If x ≻ y, y ≻ z, and x ≻ z then t(x, z) < t(x, y)

and t(x, z) < t(y, z).

In the same way, the monotonically increasing relationship implies that response time

t(x, z) must be larger than t(x, y) and t(y, z). Formally,

Axiom 4. (Increasing Monotonicity): If x ≻ y, y ≻ z, and x ≻ z then t(x, z) > t(x, y)

and t(x, z) > t(y, z).

Notice that the above monotonicity axiom implies antisymmetry.2

The representation has additional implications, beyond Monotonicity. These originate

from the difference structure. Given any x, y, and z; and x′, y′, and z′, if the response time

t(x, y) is smaller than t(x′, y′); and t(y, z) is smaller than t(y′, z′), then by the monotonic

decreasing (increasing) relationship between response time and utility differences, the

utility difference u(x) − u(y) must be larger (resp. smaller) than u(x′) − u(y′); and

u(y)− u(z) must be larger (resp. smaller) than u(y′) − u(z′). Therefore, by adding the

two differences, we have that the utility difference u(x) − u(z) is larger (resp. smaller)

than u(x′)− u(z′). Hence, by the monotonic relationship again, the response time t(x, z)

must be smaller than t(x′, z′). Our reasoning suggests the following axiom.

Axiom 5. (Time Transitivity): If t(x, y) ≤ t(x′, y′) and t(y, z) ≤ t(y′, z′), then t(x, z) ≤

t(x′, z′).

Notice that t(x, z) is well defined because of transitivity; the fact that t(x, y) and

t(y, z) are well defined imply x ≻ y and y ≻ z, so we have x ≻ z.

The next two axioms require that the data are rich enough. To explain the first axiom,

consider the case of a monotonic deceasing relation between response times and utility

differences. Suppose that t(x, y) < t(x′, y′). Then the axiom says that by making y (as

z) close enough to x or by making x (as w) close enough to y, we can make the response

time larger and make it exactly equal to t(x′, y′).

2If x ≻ x, then the monotonicity implies t(x, x) > t(x, x), which is a contradiction.
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Axiom 6. (Richness): If t(x, y) < t(x′, y′), then there exist z, w ∈ X such that t(x, z) =

t(x′, y′) = t(w, y).

The last axiom has a flavor of an Archimedian axiom. The axiom says that no matter

how small a utility difference u(x)− u(y) is, by “multiplying” the difference we can make

it larger than a utility difference u(z)− u(w), no matter how large is it. Since we do not

observe the utility itself, instead of multiplying, we consider a sequence x1, . . . , xn such

that u(xi+1) − u(xi) is equal to u(x) − u(y) for all i. Hence, the total utility difference

u(xn)−u(x1) is a multiplication of u(x)−u(y). The axiom says that by considering such

a sequence long enough we can make u(xn)− u(x1) larger than u(z)− u(w).

By using the monotonic relation between response time and utility differences, we have

that u(xi+1)−u(xi) = u(x)−u(y) if and only if t(xi+1, xi) = t(x, y). Moreover, if there is

monotonic decreasing (increasing) relationship, u(xn)− u(x1) > u(z)− u(w) if and only

if t(z, w) > (resp. <)t(xn, x1). We can formalize the axiom for each case as follows:

Axiom 7. (Decreasing Archimedean): For any x, y, z, w ∈ X such that x ≻ y and z ≻ w,

there exist x1, . . . , xn ∈ X such that xi+1 ≻ xi, t(xi+1, xi) = t(x, y) for all i ≤ n− 1, and

t(z, w) > t(xn, x1).

Axiom 8. (Increasing Archimedean): For any x, y, z, w ∈ X such that x ≻ y and z ≻ w,

there exist x1, . . . , xn ∈ X such that xi+1 ≻ xi, t(xi+1, xi) = t(x, y) for all i ≤ n− 1, and

t(z, w) < t(xn, x1).

The two axioms above are different only in that t(z, w) > t(xn, x1) in the first axiom

and t(z, w) < t(xn, x1) in the second axiom.

Theorem 1. Under Richness and Decreasing (Increasing) Archimedian, ≻ satisfies Com-

pleteness, Transitivity, Decreasing (resp. Increasing) Monotonicity, and Time-Transitivity,

if and only if there exists a function u : X → R and a strictly decreasing (resp. increasing)

function f : T → R such that

x ≻ y ⇔ u(x) > u(y),
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and

u(x)− u(y) = f(t(x, y)).

Moreover, if ≻ has two different representations (u, f) and (v, g), then there exists a

positive number α and a real number β such that u = αv + β and f(t) = αg(t) for all

t ∈ T .

Proof of Theorem 1: The necessity of the axioms is obvious. So we provide the proof

for sufficiency. We provide the proof for the case of strictly decreasing f .

For all x, y, z, w ∈ X such that x ≻ y and z ≻ w, define

(x, y) %′ (z, w) if and only if t(x, y) ≤ t(z, w). (3)

By definition %′ is complete and transitive relation. We will show the following prop-

erties of %′.

Claim:

(i) if x ≻ y, y ≻ z, and x ≻ z, then (x, z) %′ (x, y) and (x, z) %′ (y, z);

(ii) if (x, y) %′ (x′, y′) and (y, z) %′ (y′, z′), then (x, z) %′ (x′, z′);

(iii) if (x, y) ≻′ (z, w), then there exist w′, w′′ ∈ X such that (x, w′) ∼′ (z, w) ∼′ (w′′, y);

(iv) for any sequence {xi} ⊂ X , if

(a) xi+1 ≻ xi for all i,

(b) (xi+1, xi) ∼
′ (x2, x1) for all i,

(c) there exists y, z ∈ X such that y ≻ z and (y, z) ≻′ (xi, x1) for all i,

then the sequence {xi} is finite.

Proof. Note that (i) follows from Decreasing Monotonicity. (ii) follows from Time-

Transitivity. (iii) follows from Richness. To see that (iv) follows from Decreasing Archimedean,
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suppose (iv) does not hold. Then, there exists an infinite sequence {xi}
∞
i=1 ⊂ X and

(z, w) ∈≻ such that xi+1 ≻ xi, t(xi+1, xi) = t(x2, x1) for all i, and t(z, w) < t(xi, x1) for

all i.

By Decreasing Archimedean, on the other hand, there exists a sequence {yi}
n
i=1 ⊂

X such that yi+1 ≻ yi, t(yi+1, yi) = t(x2, x1) for all i, and t(z, w) > t(yn, y1). Since

t(yi+1, yi) = t(x2, x1) = t(xi+1, xi) for all i, by using Time-Transitivity repeatedly, we

obtain t(xn, x1) = t(yn, y1). Hence, t(z, w) < t(xn, x1) = t(yn, y1) < t(z, w), which is a

contradiction. �

By Claim, Theorem 4 (Krantz et al. (1971), Theorem 1, p147) shows that there exists

a function φ : X → R such that (x, y) %′ (z, w) if and only if φ(x)− φ(y) ≥ φ(z)− φ(w).

Moreover, for any x, y ∈ X such that x ≻ y, we have φ(x) > φ(y). Furthermore, if there

exists another φ′ satisfies the condition, then there exists a positive number α and a real

number β such that φ′ = αφ + β. (See Appendix B for the complete statement of the

theorem by Krantz et al. (1971).)

For all x ∈ X , define

u(x) = φ(x).

For any x, y ∈ X such that x ≻ y, we have φ(x) > φ(y), so that u(x) > u(y). By

Completeness, we have x ≻ y ⇔ u(x) > u(y).

For all x, y ∈ X such that x ≻ y, we can define a function f : T → R as follows:

f(t(x, y)) = φ(x)− φ(y).

Then we have f(t(x, y)) = u(x)− u(y). To see that f is well defined notice that

t(x, y) = t(z, w) ⇔ (x, y) ∼′ (z, w) ⇔ φ(x)−φ(y) = φ(z)−φ(w) = f(t(x, y)) = f(t(z, w)),

where (x, y) ∼′ (z, w) means (x, y) %′ (z, w) and (z, w) %′ (x, y).

To show that f is strictly decreasing, choose any s, s′ ∈ T . Then, there exist x, y, x′, y′ ∈
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X such that s = t(x, y) and s′ = t(x′, y′). Then,

s ≥ s′ ⇔ t(x, y) ≥ t(x′, y′)

⇔ (x′, y′) %′ (x, y)

⇔ φ(x′)− φ(y′) ≥ φ(x)− φ(y)

⇔ f(t(x′, y′)) ≥ f(t(x, y))

⇔ f(s′) ≥ f(s).

So f is strictly decreasing. The uniqueness result immediately follows from Theorem 4

(Krantz et al. (1971), Theorem 1, p147).

The proof for the axiomatization of the representation in which f is strictly increasing

is almost identical. In the definition (3), we need to flip the inequality as follows:

(x, y) %′ (z, w) if and only if t(x, y) ≥ t(z, w).

Then by flipping inequality consequently, we can obtain the proof for the case of strictly

increasing f . �

4 Axioms for Finite Data

In the previous section we worked with infinite data. Axioms 6 and 7 or 8 require that

the data must be infinite. Since typical experimental data are finite, we provide an

axiomatization for finite data in this section.

In Section 4.1, we maintain Completeness. We show that Completeness and a stronger

version of acyclicity, which we call Decreasing (Increasing) Compensation, characterize

the response-time representation.

In Section 4.2, we drop Completeness. We show that a stronger version of Decreasing

(Increasing) Compensation characterize the response-time representation.

4.1 Axioms for Finite and Complete Data

In this section, we assume Completeness as follows:
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Axiom 9. (Completeness): For any two distinct x, y ∈ X, x ≻ y or y ≻ x.

We need one more axiom, which is a stronger version of acyclicity. To state the axiom,

we need some preliminary definitions.

Definition 1. A sequence (xi)
n
i=1 is called a cycle if x1 = xn and for all i either xi ≻ xi+1

or xi+1 ≻ xi for all i = 1, . . . , n− 1.

Definition 2. Given a cycle (xi)
n
i=1, a decreasing (increasing) compensation is a one-to-

one function π that maps any pair (xi, xi+1) with xi ≻ xi+1 into some pair (xi′ , xi′+1) ≡

π(xi, xi+1) with xi′+1 ≻ xi′ and t(xi′+1, xi′) ≤ (resp. ≥) t(xi, xi+1).

Remark. If there is no pair (xi, xi+1) such that xi ≻ xi+1, we regard the empty function (i.e

the function that is the empty set in the set-theoretic notion of a function) as a decreasing

(and increasing) compensation.

We call a pair (xi, xi+1) in a cycle an improvement if xi+1 ≻ xi, and a worsening if

xi ≻ xi+1. We say that an improvement (xi′ , xi′+1) compensates a worsening (xi, xi+1)

if t(xi′+1, xi′) ≤ t(xi, xi+1). The idea in compensation is that the utility loss when we

go from xi to xi+1 is compensated by the utility gain when we go from xi′ to xi′+1. To

see this interpretation, notice that for the case of a monotonically decreasing relation

between time and utility differences, t(xi′+1, xi′) ≤ t(xi, xi+1) implies that the utility loss

when moving from xi to xi+1 is weakly smaller than the utility gain when moving from

xi′ to xi′+1. For the case of a monotonically increasing relation, t(xi′+1, xi′) ≥ t(xi, xi+1)

implies that the utility loss by moving from xi to xi+1 is weakly smaller than the utility

gain by moving from xi′ to xi′+1.

Definition 3. Given a cycle (xi)
n
i=1, a decreasing (increasing) compensation π is said

to be a decreasing (resp. increasing) overcompensation if (i) there exists i such that

t(π(xi, xi+1)) < (resp. >) t(xi, xi+1) or (ii) there exists i′ with with xi′+1 ≻ xi′ while

(xi′ , xi′+1) 6∈ range π.
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If π is an overcompensation, then (i) for some i, the utility loss by moving from xi

to xi+1 is strictly smaller than the utility gain by moving from xi′ to xi′+1 or (ii) there

is some utility gain by moving from xi′ to xi′+1, which is not used to compensate utility

losses. Given a cycle (xi)
n
i=1, we must have

0 =

n
∑

i=1

u(xi)− u(xi+1) =
(

∑

i:xi≻xi+1

u(xi)− u(xi+1)
)

−
(

∑

i:xi+1≻xi

u(xi+1)− u(xi)
)

.

In the case of a decreasing (increasing) relation between response time and utility dif-

ferences, if a decreasing (resp. increasing) compensation exists, then the second sum is

larger than the first sum, so it cannot add up to zero. Therefore, there should not exist

an overcompensation. This means that the following axioms are necessary for each case.

Axiom 10. (Decreasing Compensation) There is no cycle with a decreasing overcompen-

sation.

Axiom 11. (Increasing Compensation) There is no cycle with an increasing overcompen-

sation.

Remark. Observe that these axioms imply that one cannot have a cycle (xi) with xi+1 ≻ xi

for all i = 1, . . . , n − 1. The reason is that such a cycle admits the empty function as a

compensation.

The main result of this section is to show that the axioms are also sufficient.

Theorem 2. A binary relation ≻ satisfies Completeness and Decreasing (Increasing)

Compensation if and only if there exists a function u : X → R and a strictly decreasing

(resp. increasing) function f : T → R such that

x ≻ y ⇔ u(x) > u(y), (4)

and moreover that

u(x)− u(y) = f(t(x, y)). (5)
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Remark. Notice that if we do not require that f is decreasing (or increasing), then the

response-time representation only requires the existence of utility representation (4) and

the condition that t(x, y) = t(z, y) =⇒ u(x−u(y) = u(z)−u(y). Given these conditions,

once we have u satisfying (4), we can define f by (5).

Proof of Theorem 2: The necessity is obvious. The proof of the sufficiency depends

on the proof of Theorem 3 in the next section. In Theorem 3, we will show that Strong

Decreasing (resp. Increasing) Compensation is equivalent to a response-time representa-

tion. The representation is slightly weaker than the representation in Theorem 2 in that

Theorem 3 requires only x ≻ y ⇒ u(x) > u(y). However, under Completeness, this im-

plies that x ≻ y ⇔ u(x) > u(y). It suffices to show that under Completeness, Decreasing

(Increasing) Compensation implies Strong Decreasing (resp. Increasing) Compensation.

To show the claim, we show that if there exists a collection {(xki )
nk

i=1 : k = 1, . . . , K}

of cycles with an overcompensation π, then there exists a cycle (xi)
n
i=1 with an overcom-

pensation π̂.

We will construct a cycle (xi)
n
i=1 as follows. Define

x1 = x11, . . . , xn1
= x1n1

,

xn1+1 = x21, . . . , xn1+n2
= x2n2

, xn1+n2+1 = x11.

Similarly, for all k = 2, 3, . . . , K − 1, define

xn1+···+nk+k = xk+1
1 , . . . , xn1+···+nk+nk+1+k−1 = xk+1

nk+1
, xn1+···+nk+nk+1+k = x11.

By Completeness, we obtain the cycle (xi)
n1+···+nK+K−1
i=1 .

Now we will define an overcompensation π̂ by extending π. Notice that the cycle

(xi)
n1+···+nK+K−1
i=1 contains more edges than the collection {(xki )

nk

i=1 : k = 1, . . . , K} of

cycles. Define π̂ = π on the all pairs of worsening in the collection {(xki )
nk

i=1 : k = 1, . . . , K}

of cycles. In the cycle (xi)
n1+···+nK+K−1
i=1 , we have new edges from x11 to xk1 and xk1 to

x11 for all k = 2, . . . , K. By Completeness, we have either x11 ≻ xk1 or xk1 ≻ x11 for
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each k = 2, . . . , K. If x11 ≻ xk1, we define π̂(x11, x
k
1) = (xk1, x

1
1); if xk1 ≻ x11, we define

π̂(xk1, x
1
1) = (x11, x

k
1). Notice that with this definition, the conditions on the relation on

the response times are satisfied with equality. Therefore, since π is an overcompensation

for the original collection of cycles, then π̂ is an overcompensation for the cycle. �

Before we study incomplete (and finite) data in the next section, we mention the

relationship between Decreasing (Increasing) Compensation axiom and the two main ax-

ioms, Decreasing (resp. Increasing) Monotonicity and Time-Transitivity, in the previous

sections.

Remark: Decreasing (Increasing) Compensation implies Decreasing (resp. Increasing)

Monotonicity and Time-Transitivity.

Here, we will show that Decreasing Compensation implies Decreasing Monotonicity. In

the appendix, we show that Decreasing Compensation implies Time-Transitivity. Assume

that Decreasing Compensation holds. To show Decreasing Monotonicity, suppose by

contradiction that x ≻ y, y ≻ z, x ≻ z and t(x, z) ≥ min{t(x, y), t(y, z)}. Consider the

case, t(x, z) ≥ t(x, y). Consider a cycle (z, y, x, z). Since z ≺ y ≺ x ≻ z, there is only

one worsening (x, z). (Here, we are abusing notation ≺. For any x, y ∈ X , by x ≺ y, we

mean y ≻ x. We will abuse the notation in the following.) So we can define a one-to-one

function π by π(x, z) = (x, y). Since t(x, z) ≥ t(x, y), π is a compensation function and

not onto, which contradicts Decreasing Compensation. The case of t(x, z) ≥ t(y, z) can

be proved in the same way.3

3Consider a cycle (y, x, z, y). Since y ≺ x ≻ z ≺ y, in the cycle, there is only one worsening (x, z).

So we can define a one-to-one function π by π(x, z) = (z, y). Since t(x, z) ≥ t(y, z), π is a compensation

function and not onto, which contradicts Decreasing Compensation.
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4.2 Axioms for Finite and Incomplete Data

In this section, we do not assume Completeness. We will show that a stronger version

of Decreasing (Increasing) Compensation characterize the response-time representation.

The axiom is stronger only because we consider a collection of cycles instead of one cycle.

Definition 4. A set

{(xki )
nk

i=1 : k = 1, . . . , K}

in which xk1 = xknk
and for all i = 1, . . . , nk − 1 either xki ≻ xki+1 or xki+1 ≻ xki is called a

collection of cycles 4.

We need to modify the concept of compensation accordingly:

Definition 5. Given a collection {(xki )
nk

i=1 : k = 1, . . . , K} of cycles, a decreasing (in-

creasing) compensation is a one-to-one function π that maps any pair (xki , x
k
i+1) with

xki ≻ xki+1 into some pair (xk
′

i′ , x
k′

i′+1) = π(xki , x
k
i+1) with xk

′

i′+1 ≻ xk
′

i′ and t(xk
′

i′+1, x
k′

i′ ) ≤

(resp. ≥) t(xki , x
k
i+1).

Notice that the above definition is different from the one in the previous section only

because we do not require k = k′. In other words, we allow that a pair of worsening in a

cycle can be compensated by a pair of improvement in another cycle.

Definition 6. Given a collection {(xki )
nk

i=1 : k = 1, . . . , K} of cycles, a decreasing (in-

creasing) compensation π is said to be a decreasing (resp. increasing) overcompensation

if (i) there exist k and i such that t(π(xki , x
k
i+1)) < (resp. >) t(xki , x

k
i+1) or (ii) there exists

k′ and i′ with xk
′

i′+1 ≻ xk
′

i′ and (xk
′

i′ , x
k′

i′+1) 6∈ range π.

Given a collection {(xki )
nk

i=1 : k = 1, . . . , K} of cycles, if we sum up the utility differences

for each k, it must add up to zero (i.e.,
∑n

i=1 u(x
k
i )−u(x

k
i+1) = 0, where nk+1 = 1). Hence,

if we sum up the sum over k, it must add up to zero (i.e.,
∑

k

∑n

i=1 u(x
k
i )− u(xki+1) = 0,

4Sums are mod nk.
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where nk + 1 = 1 for each k). Therefore, by a similar argument in the previous section,

there should not exist an overcompensation for the collection of cycles. This means that

the following axioms are necessary for each case.

Axiom 12. (Strong Decreasing Compensation) There exists no collection of cycles with

a decreasing overcompensation.

Axiom 13. (Strong Increasing Compensation) There exists no collection of cycles with

an increasing overcompensation.

The main result in this section shows that the above axiom are also sufficient.

Theorem 3. ≻ satisfies Strong Decreasing (Increasing) Compensation if and only if there

exists a function u : X → R and a strictly decreasing (resp. increasing) function f : T →

R such that

x ≻ y =⇒ u(x) > u(y), (6)

and moreover that

u(x)− u(y) = f(t(x, y)). (7)

Remark. Since typical experimental data are finite and often incomplete, the results in

the sections are useful to test such data. Moreover, Strong Decreasing Compensation

and Strong Increasing Compensation can be checked computationally: in fact there is an

efficient algorithm to decide whether a dataset satisfies Strong Decreasing Compensation

and Strong Increasing Compensation. This fact is easy to see from the proof of the

theorem.

Remark. In the following, we prove the case of decreasing monotonic relationship. Strong

Decreasing Compensation holds if and only if there exists a solution to a system of inequal-

ities, and there are efficient algorithms to decide whether a system of linear inequalities

has a solution.
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In the definitions (8) and (9) in the proof below, we define matrices A,B,E from the

data and then we show that a response-time representation exists if and only if there is a

solution u of the following system of equations and linear inequalities

A · u = 0, (B,E) · u ≫ 0.

The main part of the proof is to show the existence of a solution is equivalent to Strong

Decreasing Compensation.

Proof of Theorem 3: We show the proof for case of strictly decreasing f . Remember

that T is the set of t ∈ R+ for which there is x, y ∈ X such that (x, y, t) ∈≻. So we write

t(x, y) to mean the t ∈ R such that (x, y, t) ∈≻.

Define first a matrix A which has |X| + T columns in | ≻ | rows. We arrange T

columns in a way that the largest t appears at the last column. (This arrangement is

made to capture the implication x ≻ y =⇒ u(x) > u(y). This will be clear later.) For

each triple (x, y, t) ∈≻ there is a row. In the row corresponding to (x, y, t) there are zeros

in every entry except for a 1 in the row for x, a −1 in the row for y, and a −1 in the row

for t. A looks as follows











··· x ··· y ··· minT ··· t ··· maxT

...
...

...
...

...
...

...
...

(x,y,t)∈≻ 0 · · · 1 · · · −1 · · · 0 0 · · · −1 · · · 0
...

...
...

...
...

...
...

...











(8)

Consider the system A · u = 0. If there are numbers solving the right hand side of

equation (7), then these define a solution u ∈ R|X|+|T |. If, on the other hand, there is a

solution u ∈ R|X|+|T | to the system A · u = 0, then the vector u defines a solution to (7).

Define the matrix B as a matrix with |X| + |T | columns and one row for every pair

(t, t′) with t < t′. In the row corresponding to (t, t′) with t < t′ there are zeroes in every

entry except for a 1 in the column for t and a −1 in the column for t′. In symbols, the
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row corresponding to (t, t′) is 1t − 1t′ . B looks as follows











··· x ··· y ··· minT ··· t ··· t′ ··· maxT

...
...

...
...

...
...

...
...

...

t<t′ 0 · · · 0 · · · 0 · · · 0 0 · · · 1 · · · −1 · · · 0
...

...
...

...
...

...
...

...
...











(9)

Then, the system B · u ≫ 0 captures the requirement that f be strictly decreasing.

In third place, we have a matrix E that captures the requirement that f(maxT ) > 0.

The matrix E has a single row and |X|+ T columns. It has zeroes everywhere except for

1 in the last column. Note that since f is strictly decreasing and f(maxT ) > 0, it follows

that f > 0. Therefore by equation (7), we have x ≻ y =⇒ u(x) > u(y).

To sum up, there is a solution to system (7) and (6) if and only if there is a vector

u ∈ R|X|+|T | that solves the following system of equations and linear inequalities

(S1) : A · u = 0, (B,E) · u≫ 0.

The entries of A, B, and E are either 0, 1 or −1. By Lemma 3, then, there is such a

solution u to S1 if and only if there is no rational vector (θ, η, λ) that solves the system

of equations and linear inequalities as follows:5

(S2) : θ · A+ η · B + λ · E = 0, (η, λ) > 0,

where (η, λ) > 0 means that η > 0, λ ≥ 0, η ≥ 0, λ > 0, or η > 0, λ > 0.

Suppose that there is no solution u of S1. Then, there exists a rational vector (θ, η, λ)

that solves the above system of equations and linear inequalities. By multiplying (θ, η, λ)

by any positive integer we obtain new vectors that solve S2, so we can take (θ, η, λ) to be

integer vectors. We transform the matrices A using θ and η. Define a matrix A∗ from A

by letting A∗ have the same number of columns as A and including: (i) θr copies of the

rth row when θr > 0; (ii) omitting row r when θr = 0; and (iii) |θr| copies of the rth row

5We apply Lemma 3 by considering B in the lemma as an empty matrix.
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multiplied by −1 when θr < 0. We refer to rows that are copies of some r with θr > 0 as

original rows, and to those that are copies of some r with θr < 0 as reversed rows.

Similarly, we define the matrix B∗ from B by including the same columns as B and

ηr copies of each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

Henceforth, we use the following notational convention: For a matrix D with |X|+ |T |

columns, write D1 for the submatrix of D corresponding to the first |X| columns; let D2

be the last |T | column. Thus, D = [D1 D2].

Then, 1 · A∗
i + 1 · B∗

i + λEi = 0 for each i = 1, 2. Moreover, B∗
1 = 0 = E1. Hence, we

obtain A∗
1 = 0 and 1·A∗

2+1·B∗
2 = −λE2 ≤ 0. The rows of B∗ are vectors in {−1, 0, 1}|X|+T

that we can write as 1t − 1t′ with t < t′.

We can assume without loss of generality that if there is a row associated with (t, t′),

then there is no row associated with (t′′, t) (i.e. t′′ < t) or with (t′, t′′) (i.e., t′ < t′′). The

reason that this is without loss is the following. Say that there are two rows associated

with (t, t′) and (t′, t′′). Then the sum of the rows will give

(1t − 1t′) + (1t′ − 1t′′) = 1t − 1t′′ .

Then the matrix B∗ can be replaced with a matrix which omits the rows for (t, t′) and

(t′, t′′) and includes instead a row for (t, t′′) while preserving the property that 1 ·A∗
2 +1 ·

B∗
2 = −λE2 ≤ 0.

The matrix A∗
1 defines a graph (X,F ) in which F is a multiset. The matrix A∗ is the

incidence matrix of the graph (X,F ); note that there is an edge (x, y) in this graph only

if x ≻ y or y ≻ x. By the Poincarè-Veblen-Alexandre theorem, since the sum of the rows

of A∗ is zero, the graph can be decomposed into a collection of cycles C1, . . . , CK .

Each cycle Ck is a sequence (xki )
nk

i=1 such that (i) xknk
= xk1, (ii) each pair (xkl , x

k
l+1)

corresponds to a row r(xkl , x
k
l+1) of A

∗, and (iii) in the row r(xkl , x
k
l+1), we have −1 at the

column for xkl and 1 at the column for xkl+1. Notice that the function r is one-to-one and

onto between the edges in F and the rows of A∗. Also, if the row r(xkl , x
k
l+1) is a reversed

row, then xkl ≻ xkl+1 because in A, we have 1 at the column for xkl and −1 at the column
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for xkl+1. Similarly, if r(xkl , x
k
l+1) is an original row, then xkl+1 ≻ xkl because in A, we have

−1 at the column for xkl and 1 at the column for xkl+1.

The rows of A are identified with a triple (x, y, t) ∈≻. For each (x, y) there is at most

one row associated to (x, y, t(x, y)). So we identify each row r with the corresponding

pair (x, y), and write t(r) for t(x, y).

Suppose first that there are no reversed rows in A∗. Then, it is a violation of Strong

Decreasing Compensation because there exists a cycle (xi) with xi+1 ≻ xi for all i (with

addition mod n).

Lemma 1. For each k ∈ K, for each reversed row r(xkl , x
k
l+1) of C

k, there is an original

row π(r(xkl , x
k
l+1)) of A

∗ with t(π(r(xkl , x
k
l+1))) ≤ t(r(xkl , x

k
l+1)). The function π is one-to-

one.

Proof. If the row r(xkl , x
k
l+1) in A

∗ is reversed, then in the column for t∗ = t(xkl , x
k
l+1) there

is a 1 in row r(xkl , x
k
l+1). Then, 1 · A

∗
2 + 1 · B∗

2 ≤ 0 means that in the column for t∗ there

is some row ρ of A∗ or of B∗ in which the entry in the column for t∗ is −1. There are two

cases to consider.

Case 1: Firstly, if row ρ is in A∗, then ρ must be an original row because its entry in

column t∗ is −1. Let π(r(xkl , x
k
l+1)) be equal to ρ. We have

t(π(r(xkl , x
k
l+1))) = t∗ = t(r(xkl , x

k
l+1)).

Case 2: Secondly, if row ρ is in B∗ then ρ corresponds to some pair (t, t∗) with t < t∗.

The reason is that there is a −1 in row ρ and column t∗, and hence ρ = 1t − 1t∗ for some

t < t∗. Moreover, by the assumption, there is no row that corresponds to some pair (t′, t)

with t′ < t. Therefore there is a 1 in the column for t and row ρ in B∗, and no −1 in the

column for t in B∗. Then, A∗
2 +B∗

2 < 0 implies that there is a row ρ̂ in A∗ for which the

column for t has a −1. The row ρ̂ must then be original. Let π(r(xkl , x
k
l+1)) = ρ̂. Note

that t = t(ρ̂) < t∗. We have

t(π(r(xkl , x
k
l+1))) < t∗ = t(r(xkl , x

k
l+1)). (10)
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In this way, we have assigned π(r(xkl , x
k
l+1)) to r(xkl , x

k
l+1). In order to proceed, we

define A∗(1) and B∗(1) by deleting the rows used above from A∗ and B∗. In particular,

in Case 1, we delete r(xkl , x
k
l+1) and π(r(xkl , x

k
l+1)) from A∗ to define A∗(1). We define

B∗(1) = B∗. In Case 2, we delete r(xkl , x
k
l+1) and π(r(x

k
l , x

k
l+1)) from A∗ in order to define

A∗(1). From B∗, we delete the row ρ which corresponds to the pair (t, t∗) in order to

define B∗(1). Note that in either case, the sum of deleted rows in the last |T | columns is

zero. Since 1 ·A∗
2 + 1 · B∗

2 ≤ 0, it follows that 1 ·A∗
2(1) + 1 · B∗

2(1) ≤ 0.

Now with A∗(1) and B∗(1), we proceed to define the function π: we choose a reversed

row from A∗(1) and assign an original row exactly in the same way above. After deleting

the corresponding rows, we obtains matrices A∗(2) and B∗(2) by the same procedure that

produced A∗(1) and B∗(1). We keep this construction until we exhaust all rows in A∗.

This ensures that the function π is one-to-one because when a row is selected to be the

image of π it is deleted from the corresponding matrix, and unavailable for assignment

in the rest of the process. The process must ends after a finite number of steps, say n,

because the number of rows in A∗ is finite.

Suppose that the process of the deletion at the end of the proof of Lemma 1 ends after

n steps. Now consider matrices A∗(n) and B∗(n). To finish the proof, it suffices to show

the following lemma because it will exhibit an overcompensation.

Lemma 2. (i) π is not onto; or (ii) there exists a reversed row r(xkl , x
k
l+1) such that

t(π(r(xkl , x
k
l+1))) < t(r(xkl , x

k
l+1)).

Proof. There are two cases to consider. The first case is when λ > 0; the second case is

when λ = 0.

Case 1: Consider the case λ > 0. Since 1 · A∗
2(n) + 1 · B∗

2(n) + λE2 = 0 and the last

column of E2 is 1, there must be a row ρ in A∗
2(n) or in B

∗
2(n) which has −1 at the last

column.

Subcase 1.1: ρ is in A∗
2(n). Then the row is an original row. Since the row is in A∗

2(n)

(and not deleted), ρ 6∈ range π. This completes the proof.
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Subcase 1.2: ρ is in B∗
2(n). Then ρ corresponds to some pair (t,maxT ) with t < maxT .

The reason is that there is a −1 in row ρ and column maxT , and hence ρ = 1t−1maxT for

some t < maxT . Moreover, by the assumption, there is no row that corresponds to some

pair (t′, t) with t′ < t. Therefore, there is a 1 in the column for t and row ρ in B∗(n), and

no −1 in the column for t in B∗(n). Then, A∗
2(n) +B∗

2(n) < 0 implies that there is a row

ρ̂ in A∗(n) for which the column for t has a −1. The row ρ̂ must then be original. Since

the row is in A∗
2(n) (and not deleted), ρ̂ 6∈ range π. So, π is not onto. This completes the

proof for the first case.

Case 2: Consider the case λ = 0. Since (η, λ) > 0, then η > 0. So B∗ is not zero. there

must be a row in B∗
2 in which there exists 1 in a column and there is no −1 at the column

because the assumption on B. Since 1 · A∗
2 + 1 · B∗

2 ≤ 0, the 1 in B∗
2 must be canceled

out some −1 in A∗. Therefore, Case 2 must exist in Lemma 1. Therefore, (10) holds. So

there exists a reversed row r(xkl , x
k
l+1) such that t(π(r(xkl , x

k
l+1))) < t(r(xkl , x

k
l+1)).

To finish the proof of Theorem 3, in the collection {(xki )
nk

i=1}
K
k=1 of cycles, remember

that if the row r(xkl , x
k
l+1) is a reversed row, then xkl ≻ xkl+1; and if r(xkl , x

k
l+1) is an original

row, then xkl+1 ≻ xkl . So the function π is a function from a pair of worsening to a pair of

improvement, as desired. By Lemma 1, π is a compensation function. Moreover, Lemma

2 shows that π is an overcompensation. Thus we obtain a violation of Strong Decreasing

Compensation.

The proof for the case of increasing f is almost identical. We need to change the

definition (9) of B and the definition of E. In B, we need to flip 1 and −1, which makes

f strictly increasing. In E, we put 1 in the column of minT instead of maxT , which gives

us f(minT ) > 0. Together with strictly increasingness of f , we have f > 0.

In Lemma 1, we need to flip the inequality as t(π(r(xkl , x
k
l+1))) ≥ t(r(xkl , x

k
l+1)). In

Lemma 2, we need to flip the inequality as t(π(r(xkl , x
k
l+1))) > t(r(xkl , x

k
l+1)). �
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A Appendix: Theorem of the Alternative

We make use of the following version of the theorem of the alternative. See Lemma 12 in

Chambers and Echenique (2011). It has solutions over the real field in the primal system,

and over the rational field in the dual.
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Lemma 3. Let A be an m× n matrix, B be an l× n matrix, and E be an r × n matrix.

Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one

of the following alternatives is true.

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u≫ 0.

2. There is θ ∈ Qm, η ∈ Ql, and π ∈ Qr such that θ ·A+ η ·B + π ·E = 0; π > 0 and

η ≥ 0,

where π > 0 means that all of the coordinates are nonnegative and some coordinates are

positive.

B Appendix: Theorem 1 in Krantz et al. (1971) (p.147)

Theorem 4. Let A be a nonempty set, A∗ be a nonempty subset of A × A, and % be a

binary relation on A∗. Suppose that

• % is complete and transitive,

• If ab, bc ∈ A∗, then ac ∈ A∗,

• If ab, bc ∈ A∗, then ac ≻ ab, ac ≻ bc,

• If ab, bc, a′b′, b′c′ ∈ A∗ ab % a′b′, and bc % b′c′, then ac % a′c′,

• If ab, cd ∈ A∗ and ab ≻ cd, there exist d′, d′′ ∈ A such that ad′ ∼ cd ∼ d′′b,

• For any sequence {ai}, if ai+1ai ∼ a2a1 for all i and there exist d′d′′ ≻ aia1 for all

i, then the sequence is finite.

Then, there exists ψ : A∗ → R++ such that for all a, b, c, d ∈ A

(i) if ab, cd ∈ A∗, then

ab % cd ⇔ ψ(ab) ≥ ψ(cd).
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(ii) if ab, bc ∈ A∗, then

ψ(ac) = ψ(ab) + ψ(bc).

If ψ′ also has these properties, then there exists a positive number α such that ψ = αψ′. If,

in addition, for all a, b ∈ A, a 6= b, either ab ∈ A∗ or ba ∈ A∗, then there exists φ : A→ R

such that for all ab ∈ A∗, ψ(ab) = φ(a) − φ(b). If φ′ satisfies the same property, then

there exists a real number β such that φ = φ′ + β.

C Appendix: Compensation implies Time Transitiv-

ity

Assume Decreasing Compensation to show Time-Transitivity. Suppose by contradiction

that t(x, y) ≤ t(x′, y′), t(y, z) ≤ t(y′, z′), and t(x, z) > t(x′, z′). We have x ≻ z ≺ y ≺ x

and x′ ≻ y′ ≺ z′ ≺ x′. There are two cases to consider x ≻ x′ and x′ ≻ x. First we

consider the case where x ≻ x′. Consider a cycle:

x′ ≻ y′ ≻ z′ ≺ x′ ≺ x ≻ z ≺ y ≺ x ≻ x′.

We can define a one to one function π as follows: π(x′, y′) = (y, x), π(y′, z′) = (z, y),

π(x, z) = (z′, x′), and π(x, x′) = (x′, x). This function is a compensation function. Since

t(x, y) ≤ t(x′, y′), t(y, z) ≤ t(y′, z′), and t(x, z) > t(x′, z′), this contradicts Decreasing

Compensation. The other case can be proved in the same way.6 �

In the same way, Increasing Compensation implies Time Transitivity.

6Consider a cycle z ≺ y ≺ x ≺ x′ ≻ y′ ≻ z′ ≺ x′ ≻ x ≻ z. We can define a one to one function π

as follows: π(x′, y′) = (y, x), π(y′, z′) = (z, y), π(x, z) = (z′, x′), and π(x′, x) = (x, x′). This function

is a compensation function. Since t(x, y) ≤ t(x′, y′), t(y, z) ≤ t(y′, z′), and t(x, z) > t(x′, z′), which is a

contradiction to Decreasing Compensation.
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