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Abstract

We investigate stochastic choice when only the average and not the entire

distribution of choices is observable, focusing attention to the popular Luce

model. Choice is path independent if it is recursive, in the sense that choosing

from a menu can be broken up into choosing from smaller submenus. While

an important property, path independence is known to be incompatible with

continuous choice. The main result of our paper is that a natural modifica-

tion of path independence, that we call partial path independence, is not only

compatible with continuity but ends up characterizing the ubiquitous Luce (or

Logit) rule.

1. Introduction

This paper studies stochastic choice in linear environments where only average choices

rather than the entire distributions of choices, are observed. Average statistics are

simpler to interpret and report than entire distributions. While these data are less

rich, for the ubiquitous Luce model of stochastic choice, average statistics lose no

power in terms of identification. We provide a novel characterization of the Luce

model for this environment via a relaxation of the classic path independence axiom.

∗This research was supported by Grant SES 1558757 from the National Science Foundation.
Echenique and Saito are grateful to the National Science Foundation. We want to thank the editor
and two anonymous referees for very helpful comments on an earlier draft. We are also grateful to
Michihiko Kandori and Jay Lu for suggestions on some alternative interpretations of our results.
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Studying average choice has several compelling motivations. Most salient is that

average or aggregate statistics of choices are more parsimonious than a description

of the entire distribution. For example, a restaurant that lists n different items on

its menu effectively offers 2n different possible meals that depend on which items are

ordered. Then a random choice must track how many diners purchase each different

package of items; describing the entire distribution over meals requires 2n−1 numbers.

On the other hand, tracking an average by recording the proportion of diners that

order each item has a dimensionality of n.1 Average choices provide the corollary

benefits of simplicity, such as ease of intuition and visualization. Average statistics

are also easier to collect and report than entire distributions when observations accrue

over time. Consider the contrast between tracking an individual’s monthly investment

decisions over a lifetime of employment and tracking her total portfolio at retirement.

Of course, this simplicity comes with possible disadvantages since the average dis-

regards potentially important information regarding the distribution of choices. In

the restaurant example, seeing the proportion of diners ordering each item ignores

possible correlations across items. However, in this paper we focus on the Luce rule,

and show that the implied Luce weights maintain the same canonical level of unique-

ness with only average choice data that they enjoy with information about the full

distribution. Therefore, our exercise illuminates a novel methodological advantage of

the Luce formula, namely that higher-order moments of the choice distribution are

gratuitous for identifying its parameters. That is, while the benefits of restricting

attention to average choice data are general, these benefits come with no loss of in-

formation when specialized to the Luce model. This is a consequence of Luce’s sharp

functional form: the weights of all objects can be uniquely identified by observing the

average choice from doubletons, since the location of the average along the segment

joining the two choices uniquely identifies the ratio of their Luce weights.

Beyond identification, we further contribute to the understanding of the Luce

model by providing a full characterization for average choice data. Our main condition

relaxes the classic path independence condition made famous by Plott (1973). Plott’s

condition requires that choices from large menus can be recursively computed by

considering the subchoices from submenus, and then choosing from those subchoices.

More precisely, if x is chosen from submenu A and y is chosen from submenu B, then

1We thank the co-editor Rani Spiegler for suggesting this example.
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whichever is chosen from the pair {x, y} is also chosen from the combined menu A∪B.

Path independence allows the decomposition of a large choice problem into smaller

subproblems without affecting the final selection.

Our generalization, which we call partial path independence, only requires that if

x is chosen from A and y is chosen from B, then the choice from A ∪ B is a convex

combination—in other words, a lottery—of x and y. The important departure from

Plott path independence is that the weights on x and y can depend on the sets A and

B from which they were chosen. In other words, we allow for some degree of path

dependence. To satisfy Plott path independence, the average choice from A∪B must

be equal to the average choice from A ∪ B′ for any other set B′ that also yields y as

its average choice. This is inconsistent with the Luce formula because if B′ has many

more elements it will carry more weight than B when combined with A.

The resulting equivalence of our relaxed form of path independence to the Luce

model is technically interesting in view of two earlier theoretical literatures. The first

is a set of impossibility theorems for path independence. Although it is a well-known

necessary condition for rational deterministic choice, Kalai and Megiddo (1980) and

Machina and Parks (1981) showed that classic path independence has pathological

implications for average stochastic choice: path independence cannot be satisfied by any

continuous model of stochastic choice. In contrast, we demonstrate that an intuitive

relaxation of path independence is not only compatible with continuous stochastic

choice, but ends up characterizing the ubiquitous Luce model.

Average choice and its linear structure also yield additional interpretations for path

independence that are absent in the general case. One prominent new interpretation

is in terms of prior selection. An agent faces a set of possible priors (probability

distributions) over states of the world, and must choose one prior. There are many

models of multiple priors and many theories of which prior gets selected, but these

are usually guided by some consequentialist principle. For example, a prior may be

chosen because it is pessimistic. Path independence can be understood as a recursive,

or consistent, guide to choosing a prior: choices from larger sets A ∪ B are derived

from the choices one would make from smaller sets. This imposes a consistency on

choices as one goes from smaller to larger sets. The negative results of Kalai-Megiddo

and Machina-Parks mean that continuity cannot be reconciled with such consistency

or recursivity. In contrast, our result says that if one allows for the selections from
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A ∪ B to depend on the level of ambient uncertainty when a prior from A and B

were selected, as reflected in the priors in the sets A or B, then this impossibility is

avoided. In fact, the Luce model emerges as the only prior selection rule that is both

continuous and partially path independent.

The second connected literature is the axiomatic theory of the Luce rule. By ex-

ploiting the convexity of linear spaces, our characterization departs from the standard

understanding of the Luce model, which is well-known to be equivalent to indepen-

dence of irrelevant alternatives (IIA). When the Luce model is generalized or altered

to accommodate alternative patterns of choice, IIA is almost always implicated. Our

characterization exposes new and interesting features of the Luce model, in partic-

ular its exact connection to a classic axiom for deterministic choice. The relaxation

of path independence illuminates the importance of convexity in decompositions for

the Luce model. Aside from being necessary for the Luce model, IIA and our path

independence condition do not share any immediate resemblance. In Section 4.1) we

discuss the relation between IIA and our path independence axioms more carefully.

Specifically, we explain why our main result cannot be proven by simply showing that

our path independence implies IIA.

We hope that our axiomatization allows for subsequent generalizations of the Luce

model that relax path independence rather than IIA. As an immediate illustration of

the usefulness of using average choice, we sharpen the model and provide, to our

knowledge, the first axiomatization of the linear Luce model. It is difficult to over-

state the importance of Luce model or its equivalent formulation as the Logit model of

discrete choice in applications. Logit is the workhorse specification of demand in most

structural models of markets and a standard part of graduate econometric training.

But in nearly all these applications, the utility function is specified to be linear in

attributes. Despite their prevalence, the full empirical content of linear Logit models

was previously unknown. For example, in his influential paper justifying the Logit

model for empirical estimation, McFadden (1974) offered linearity as an axiom (Mc-

Fadden’s Axiom 4) rather than deriving linearity as a necessary implication of more

basic conditions phrased on choice data. We show that an average choice version

of the von Neumann–Morgenstern independence axiom ensures that the Luce utility

function is ordinally equivalent to a linear function.

Finally, aside from providing novel theoretical foundations, our associated modifi-
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cation of path independence is practically useful as it is statistically very well-behaved,

and better suited than IIA for an empirical assessment of Luce’s model, benefits that

flow naturally from the reduced complexity and dimensionality of average choice as

a primitive. In particular, the IIA axiom is more cumbersome and more volatile

than partial path independence because testing IIA requires estimating the ratios of

relative choice probabilities. These ratios are statistically more complicated objects

than the average. With small samples, they are difficult to estimate robustly. Even

with large samples, estimates of these ratios can have an arbitrarily large variance.

We discuss these issues in detail in Section 4.4, where we demonstrate formally the

improved behavior of the average.

The empirical difficulty in testing the IIA axiom is not a new observation. In fact,

Luce (1959) already understood the complications of testing IIA when he introduced

the condition. Using calculations similar to ours in Section 4.4, Luce concludes that

a reliable test of IIA would require large datasets with several thousands of obser-

vations. The tests are therefore impracticable for most experimental designs.2 Our

axiomatization for average choice is much better behaved because averages can be

estimated more efficiently than ratios of probabilities.

We close the introduction by discussing some related papers. Although the prim-

itives of the their model are very different, Billot et al. (2005) use an axiom with a

similar syntax to our partial path independence. They take as primitives an arbitrary

set C of cases and a finite set Ω of states of the world. They characterize a function

p mapping sequences in C to beliefs over Ω. Their concatenation axiom says that

the beliefs induced by the concatenation of two databases must lie in the line seg-

ment connecting the beliefs induced by each database separately. This is analogous

to partial path independence.

The environments and interpretations of the axioms are obviously different. More-

over, there are clear mathematical differences between their concatenation and our

partial path independence. The concatenation axiom is “stronger” in their application

because it applies to databases even when they share common cases. Concatenation is

different from set union because it “counts” multiple copies of the same item. On the

other hand, our partial path independence does not double count sets with multiple

2Luce suggested using psychophysical experiments to obtain the kinds of sample sizes needed to
test IIA.
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copies of the same element. This difference plays a crucial role in the proof of Billot

et al. (2005). It allows Billot et al. (2005) to extend the domain of p to rational-

coordinate vectors by considering duplication of the same dataset, which is the first

step of their proof and crucial for the subsequent analysis3. The analysis in their proof

is not possible when considering our domain because our primitive considers sets and

does not distinguish duplicates, as opposed to the lists of their domain.4

Several recent papers in economic theory have proposed generalizations of the Luce

model, but in the classic environment of full random choice rather than our average

choice setting. Gul et al. (2014) recently proposed an extension of the Luce model

to address well-known difficulties of the Luce model that arise when objects have

common attributes. Dogan and Yildiz (2016) also propose an extension of the Luce

model. They offer their main axiom, which they call Stochastic Path Independence, as

an analog of path independence for standard random choice environments with infor-

mation about the full distribution, as opposed to the average choice settings studied

in this paper an in the original papers by Kalai and Megiddo (1980) and Machina

and Parks (1981). While both are inspired by path independence, we see no substan-

tive connection our condition and theirs; for example their condition is incompatible

with continuity for random choice whereas we explicitly invoke continuity for average

choice as an additional assumption.

Our results can be viewed as the selection of a representative element from a

set of vectors. The representative being the average choice. There is an axiomatic

literature in social choice in electing representatives (see Chambers (2008)), but to

the best of our knowledge there are no closely connected results to ours. Perhaps

the closest results are about choosing a representative prior in a Bayesian setting, see

the discussion in Section 2.5. The work of Chambers and Hayashi (2010), who show

that it is impossible to select a representative that is always consistent with Bayesian

updating, is close in spirit to our discussion in 2.5.

3See page 1131–1132 of Billot et al. (2005)
4One may wonder that, although our partial path independence itself is “weaker” than the con-

catenation axiom by itself, it may be “equivalent” to the concatenation axiom when assuming our ac-
companying ancillary axioms. This is not true because our representation does not satisfy a stronger
version of partial path independence which allows that the two sets contain the same elements.
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2. Average choice and the Luce model

2.1. Notation

We begin by formally describing our model. Definitions of standard mathematical

terms are in Section 5.1 of the Appendix.

If A ⊆ Rn, then convA denotes the the set of all convex combinations of elements

in A, termed the convex hull of A. Let conv0A denote the relative interior of convA.

A preference relation is a weak order; that is, a complete and transitive binary

relation.

A function f : Y → R+ is a finite support probability measure on Y if there is a

finite subset A ⊆ Y such that
∑

x∈A f(x) = 1 and f(x) = 0 for x /∈ A. In this case,

we say that the set A is a support for f . When Y is a finite set, we use the term

lottery to refer to a probability measure with finite support. Let ∆(Y ) denote the set

of all lotteries; and for A ⊂ Y , let ∆(A) denote the set of lotteries whose supports

are contained in A.

2.2. Primitives

Let X be a compact and convex subset of Rn with n ≥ 2. Without loss of generality,

assume X is of full dimensionality n. An important special case is when X is a set

of probability measures over a finite set. For example, if we let P be a finite set of

prizes and X = ∆(P ) be the set of all lotteries over P parameterized as a subset of

Rn with n = |P | − 1, yielding the setting of Gul and Pesendorfer (2006). Or we can

let S be a finite set of states of the world, and X = ∆(S) be the set of beliefs over S.

The latter is the setting of Section 2.5.

Let A denote the family of all finite subsets of X, with the interpretation that

A ∈ A is a menu of available options. An average choice is a function

ρ∗ : A → X

such that ρ∗(A) ∈ convA for all A ∈ A. That is, an average choice takes a menu of op-

tions to a weighted average of those options, where weighted averages are represented

as convex combinations of A.
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2.3. Luce model

The more standard model of random choice does not reduce distributions to their

averages but records the shape of the entire choice distribution. A stochastic choice

is a function

ρ : A → ∆(X)

such that ρ(A) ∈ ∆(A).

A stochastic choice ρ : A → ∆(X) is a continuous Luce rule if there is a continuous

function u : X → R++ such that

ρ(x,A) =
u(x)∑
y∈A u(y)

. (1)

Every stochastic choice ρ induces an average choice ρ∗ in the obvious manner. The

average choice ρ∗ is rationalized by the stochastic choice ρ if

ρ∗(A) =
∑
x∈A

xρ(x,A)

for all A ∈ A. An average choice ρ∗ is continuous Luce rationalizable if there is a

continuous Luce rule ρ that rationalizes ρ∗.

2.4. A characterization of average choices satisfying partial path independence,

interiority, and continuity

Our main axiom modifies the path independence axiom proposed by Plott (1973).

Plott’s axiom imposes recursive structure on decomposed choice, in the sense that

choice from A ∪ B is obtained by choosing first from A and B separately, and then

from a set consisting of the two chosen elements. The idea is that knowing the chosen

elements from A and B is sufficient to predict the choice from their union. Plott orig-

inally intended his condition for abstract determinate choice. For the same average

choice environment that we consider, Kalai and Megiddo (1980) and Machina and

Parks (1981) argue that Plott’s axiom is too strong. They show that Plott path in-

dependence leads to an impossibility result. Our result is that a natural modification

of Plott’s axiom avoids the negative implications of the original axiom and instead
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provides an unanticipated characterization of Luce model. So while Luce models are

inconsistent with Plott’s version of path independence, they are completely charac-

terized by our modification.

Our notion of path independence generalizes Plott’s version of path independence.

It asserts that the average choice from A ∪B is a convex combination of the average

choice from A and the average choice from B. Formally, our axiom is:

Partial path independence: If A ∩B = ∅, then

ρ∗(A ∪B) ∈ conv{ρ∗(A), ρ∗(B)}.

As mentioned, the main relaxation of Plott’s path independence is that the weights

assigned to the choices ρ∗(A) and ρ∗(B) from the submenus can depend on the par-

ticular submenus from which they were chosen. More specifically, if ρ∗(A) = ρ∗(A′),

Plott path independence would imply ρ∗(A ∪B) = ρ∗(A′ ∪B). However, in the Luce

model, the weight of A or A′ versus B will depend on the number of elements in A

or A′, and on their utility values. For example, if u is a constant function, then the

weight of ρ∗(A) and ρ∗(A′) versus ρ∗(B) in ρ∗(A ∪B) and ρ∗(A′ ∪B) will be propor-

tional to the cardinalities of A and A′. We formally discuss the relationship between

our version of path independence and Plott’s original axiom in Section 4.2.

We argue that partial path independence has its own normative appeal, separately

from its relationship to Plott’s condition. One interpretation is that the choice from

A∪B must be a randomization of ρ∗(A) and ρ∗(B). If we think of the agent’s choice

as a random variable X and a menu A as being the conditioning event X ∈ A, then

the expected choice ρ∗(A) can be written as E(X|X ∈ A) and path independence is

analogous to the tower property of averages with respect to conditional averages:

E(X|X ∈ A∪B) = E(X|X ∈ A)Pr(X ∈ A|X ∈ A∪B)+E(X|X ∈ B)Pr(X ∈ A∪B).

In this interpretation, the weight on ρ∗(A) versus ρ∗(B) is determined exactly by the

probability of the optimal element living in A versus living in B. The formula is

directly satisfied by the Luce formula, where the probability of choosing an outcome

in a menu is computed as the conditional probability of its Luce weight with respect

to the summed Luce weights over the menu. Here, our axiom is about conditional

expectations rather than conditional probabilities. Notice that other important rules
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with background randomness, such as the random expected utility representation of

Gul and Pesendorfer (2006) or the more general family of random utility models,

fail to satisfy partial path independence. This is because the “probability space”

parameterized in these representations is not directly defined on the choice objects

themselves, but rather on indirect artifacts like utility functions or strict orders.

Our second condition is analogous to the positivity axiom in Luce’s characteri-

zation of his model. Luce positivity requires that all elements have strictly positive

probability, that is, ρ(x,A) > 0 whenever x ∈ A. In our model, the analogous re-

quirement is that the average choice is in the strict interior of the convex hull of A

since all elements have strictly positive weight in computing that average.

Interiority: For all A ∈ A,

ρ∗(A) ∈ conv0A

Our final axiom imposes a limited version of continuity.

Continuity: Let x /∈ A. For any sequence xn in X, if xn → x, then

ρ∗(A ∪ {x}) = lim
n→∞

ρ∗(A ∪ {xn}).

Continuity is a technical condition, but note that the stronger assumption that ρ∗

is a continuous function of A is inconsistent with the Luce model because of the effects

of nearby but identical objects. The nature of the discontinuity is closely related to

the classic blue bus–red bus objections to IIA. We discuss these issues in Section 4.

Our main finding is that partial path independence, interiority, and continuity

characterize the continuous Luce model.

Theorem 1. An average choice is continuous Luce rationalizable if and only if it

satisfies partial path independence, interiority, and continuity.

We can gain some intuition for Theorem 1 from Figure 1. The central observation

is that partial path independence pins down ρ∗(A) uniquely from the value of ρ∗(A′)

when A′ ( A.5 We construct a rationalizing Luce model from the average choice from

sets of small cardinality,then use path independence to show that ρ∗ must always

coincide with the average choice generated from that Luce model.

5See also the discussion in Section 4.1, where we compare path independence and Luce’s IIA, and
argue that we could not use IIA to the same effect as path independence.
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Figure 1: The set A = {x, y, z, w, q, r}: ρ∗(A) is determined from partial path inde-
pendence, ρ∗(A \ {x}), and ρ∗(A \ {y})

Figure 1 shows how ρ∗(A) is uniquely determined. The points x and y are extreme

points of conv(A), where A = {x, y, z, w, q, r}. Partial path independence forces ρ∗(A)

to simultaneously lie on the line segment joining x and ρ∗(A \ {x}) and lie on the line

segment joining y and ρ∗(A \ {y}). The main step in the proof (Lemma 6) establishes

that, except for some “non-generic” sets A, the intersection of the line segments x—

ρ∗(A\{x}) and y—ρ∗(A\{y}) is a singleton, that is, ρ∗(A) is uniquely identified from

ρ∗(A \ {x}) and ρ∗(A \ {y}).
Figure 1 also illustrates why the line segments x—ρ∗(A \ {x}) and y—ρ∗(A \ {y})

have a singleton intersection. We choose x and y to lie on a proper face of convA,

so there is a hyperplane supporting A at that face. If there were two points in the

intersection of x—ρ∗(A \ {x}) and y—ρ∗(A \ {y}), then all four points x, ρ∗(A \ {x}),
y and ρ∗(A \ {y}) would lie in the same line. This implies that ρ∗(A \ {x}) and

ρ∗(A \ {y}) lie on the hyperplane as well. But since these two average choices are in

the relative interior of the respective sets, it implies that A also lies in the hyperplane.

This qualifies when A is not “not generic:” this argument works whenever convA has

a nonempty interior.

Finally, as mentioned in the Introduction, the Luce representation is uniquely

identified from average choice, in exactly the same manner it is identified up to a

scalar multiple when observing the richer domain of full random choice. When ρ∗ is

Luce rationalizable, and the Luce rule is defined by (1), then we say that the average
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choice function is continuous Luce rationalizable by u. The Luce model carries the

same level of identification for its parameters with average choice that it enjoys with

richer stochastic choices, that is, average choices provide sufficient data to pin down

the Luce weights: If an average choice function is continuous Luce rationalizable by

u ∈ RX
++ and by v ∈ RX

++, then there exists a positive real number α such that

u = αv.6

2.5. On Bayesian updating and path independence

Up to now, we have interpreted our model as a reduction of stochastic choice. Here we

consider a different interpretation: The elements of A are interpreted as (posterior)

beliefs, and the randomization over the elements of a set A is viewed as a signal

structure. In this re-interpretation of our model, partial path independence restricts

two-stage signals in what we view as a normatively appealing way.7

Consider the following example. There are two states of the world: in state 1,

the stock market goes up, and in state 2 it goes down. An agent will first receive

information from one of two different news sources. The first source is cable TV,

denoted by A. The second source is a newspaper, denoted by B. Source A may send

a number of possible signals, each one resulting in a different posterior. Think of A

then as a finite collection of vectors x ∈ R2, with xs being the probability of state s

in signal realization x. Associated to A is a probability distribution ρ(x,A) for x ∈ A.

So ρ(x,A) is the probability of observing signal x when receiving news from source A.

Similarly, if the agent gets to read newspaper B, then she may acquire one of a finite

set of possible posteriors. We view B as the set of possible posteriors, and associate

a probability ρ(x,B) with each x ∈ B.

Now, when the agent learns that she will receive news from source A, she will have

beliefs ρ∗(A) about the different states of the world. Bayesian updating demands that

ρ∗(A) =
∑

x∈A xρ(x,A); in our language, that ρ∗(A) be the average choice from A.

Indeed, Bayesian updating means that for each x ∈ A, xs = Pr(x|s)Pr(s)/Pr(x);

6In particular this means that if we strengthen Partial Path Independence axiom to require that
if A ∩B = ∅, then ρ∗(A ∪B) = 1

2ρ
∗(A) + 1

2ρ
∗(B) we characterize the simple average. This is a well

known result.
7We thank Michihiro Kandori and Jay Lu for comments leading to the discussion in this section.

The interpretation discussed here is closer to the spirit of Billot et al. (2005), which we described in
the introduction.
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where Pr(x|s) is the probability of the signal x in state s, and Pr(x) is the uncon-

ditional probability of signal x in signal structure A. Write Pr(x) = ρ(x,A) and

Pr(s) = ρ∗(A)s, then by adding over x ∈ A, one obtains
∑

x∈A ρ(x,A)x = ρ∗(A). In

other words, the average choice from A is the prior belief. The same is true for B and

ρ∗(B).

Given the interpretation of A and B as two sources of news, and given the resulting

interpretation of ρ∗(A) and ρ∗(B) as the beliefs the agent shoud have upon learning

that she will receive news from A or B, what can we say about ρ∗(A ∪ B)? Before

learning the source of news, our agent will have some beliefs ρ∗(A ∪ B) about the

state of the world. It stands to reason that this belief should be a convex combination

of ρ∗(A) and ρ∗(B). If our agent is Bayesian, she should ascribe some probability to

getting news from source A and some probability to getting news from B. Then her

beliefs, before she learns whether the news will come from A or B, should be a convex

combination of the beliefs she would hold upon learning where the news will come

from. Therefore ρ∗(A ∪B) should be a convex combination of ρ∗(A) and ρ∗(B). But

this of course is our partial path independence axiom.

More generally, let S be a finite set, and interpret the elements of S as states

of the world. Each x ∈ X = ∆(S) is a belief over S. We are going to interpret

A ∈ A and ρ(., A) as a signal structure. Specifically, suppose an agent has a prior

belief z ∈ ∆(S) over S but can observe a signal that takes as many values as there

are elements in some set A. Conveniently, we can identify a signal realization with

its induced posterior belief that it gives rise to, so x ∈ A is the value of the signal

for which the updated posterior belief is x. The probability of observing x ∈ A from

signal structure A is ρ(x,A). This allows us to parameterize arbitrary structures as

subsets of X. Bayesian updating means that

z =
∑
x∈A

ρ(x,A)x = ρ∗(A).

In other words, the average choice from A is the prior belief.

Consider now the signal structure given by {ρ∗(A), ρ∗(B)}, together with some

choice probabilities to be specified. We may think of the structure as representing

signals whose realization is revealed in two stages. First, we learn whether we will

observe a signal value from A or from B. Second, we learn the specific signal value in
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A ∪ B. If we are told to expect a signal realization from A, then Bayesian updating

dictates the belief ρ∗(A), which is the expected posterior from signal structure A.

Similarly, if we are told that the signal will come from B, our belief should be ρ∗(B).

Partial path independence now demands that the prior from A ∪ B should be

a weighted average of the intermediate beliefs ρ∗(A) and ρ∗(B). This demand is

reasonable because the two intermediate signals (“the signal will come from A” and

“the signal will come from B”) summarize the a priori information contained in the

signals in A and in B. In other words, if we are told that the signal will come from

A then the belief will be ρ∗(A), and if we are told it will come from B then the belief

will be ρ∗(B). So a priori our belief should be an expectation that places some weight

on ρ∗(A) and some weight on ρ∗(B).

Path independence demands more than this. It says that the weights placed on

ρ∗(A) and ρ∗(B) should be the same regardless of the quality of information in A or

B. The weights should only depend on what the expected posteriors under A and

B but not on the identity or number of the ultimate signals (if ρ∗(A) = ρ∗(A′) and

ρ∗(B) = ρ∗(B′), then ρ∗(A ∪B) = ρ∗(A′ ∪B′). At a prima facie level, this seems like

an unreasonable requirement. At a structural level, the impossibility results of Kalai-

Megiddo and Machina-Parks imply that it is not possible to satisfy path independence

and continuity.

In contrast, Theorem 1 says that partial path independence and continuity pin

down a unique model for the probability distribution of signals. The model has the

Luce form. It says that there is a function u, that we can think of as measuring the

likelihood of each signal, such that the probability of each signal x ∈ A is a kind of

conditional probability: ρ(x,A) = u(x)/
∑

y∈A u(y).

3. Linear Luce

We now specialize the representation result. Specifically, we consider continuous Luce

models in which:

• u(x) = f(v · x) with v ∈ Rn and f a continuous strictly monotonic function;

• or u(x) = v · x+ β, with v ∈ Rn and β ∈ R.
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The first model we term the linear Luce model. The second is called the strictly affine

Luce model.

The assumption that u is linear is “is maintained in the great majority of applica-

tions” of the multinomial logit (Train, 1986, p. 35). To our knowledge, our results on

linear Luce and the strictly affine Luce model are the first axiomatic characterizations

of any version of Luce model with linearity in object attributes.

A stochastic choice ρ : A → ∆(X) is a linear Luce rule if there is v ∈ Rn and a

monotone in creasing and continuous function f : R→ R++ such that

ρ(x,A) =
f(v · x)∑
y∈A f(v · y)

.

Consider the following axiom, which captures the kind of independence property

that is normally associated with von Neumann-Morgenstern expected utility theory.

Independence: If ρ∗({x, y}) = (1/2)x + (1/2)y, then for all λ ∈ R and all z s.t.

λx+ (1− λ)z, λy + (1− λ)z ∈ X,

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z.

Note that if ρ∗ is continuous Luce rationalizable with utility u, then u(x) = u(y)

iff ρ∗({x, y}) = (1/2)x + (1/2)y. So the meaning of the independence axiom is that

u(x) = u(y) iff for all λ ∈ R and all z s.t. λx + (1 − λ)z, λy + (1 − λ)z ∈ X,

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z.

The next diagram is a geometric illustration of independence. Note that the

average choice ρ∗(λx+(1−λ)z, λy+(1−λ)z) must be translated with λ from ρ∗(x, y).

Since we have u(x) = u(y), this will force a rationalizing rule to translate indifference

curves in λ in a similar fashion, so the indifference curves passing through the points

λx+ (1−λ)z and λy+ (1−λ)z, and through λ′x+ (1−λ′)z and λ′y+ (1−λ)z′, must

be translates of the indifference curve passing through x and y.
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x

y

z

ρ∗(λx + (1− λ)z, λy + (1− λ)z)

ρ∗(λ′x + (1− λ′)z, λ′y + (1− λ′)z)

ρ∗(x, y)

The independence axiom ensures that u satisfies von Neumann-Morgenstern inde-

pendence. The immediate implication of the axiom (Lemma 8) says that u satisfies a

weak version of independence, but this version can be shown to suffice for the result

(Lemma 9). The result is as follows.

Theorem 2. An average choice is continuous linear Luce rationalizable if and only

if it satisfies independence, partial path independence, interiority, and continuity.

4. Discussion

We conclude by discussing several features of our model and characterization. We

begin by comparing our model and axiom to standard stochastic choice and Luce’s

IIA axiom, and explain why the conditions are quite distant. We next compare

our axiom to Plott’s original path independence conditions, and show that they are

disjoint in the sense that no average choice can satisfy both axioms. We next turn

to our limited version of continuity, and explain why more general continuity of ρ∗

is violated by the Luce model. Finally, we compare the small-sample properties of

testing our partial path independence condition to testing the classic IIA axiom, and

conclude that average choices are better behaved than ratios of choice probabilities.
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y

x

zρ∗({x, y})

ρ∗({x, y, z})

Figure 2: Path independence and Luces’ IIA.

4.1. Partial path independence and IIA

Taking a stochastic choice ρ as primitive, Luce (1959) famously showed that the Luce

model is characterized by the following IIA axiom:

ρ(x, {x, y})
ρ(y, {x, y})

=
ρ(x,A)

ρ(y, A)

for any A 3 x, y.

While they both are invoked in characterizations of the Luce model, IIA and path

independence are very different conditions. Consider the violation of path indepen-

dence illustrated in Figure 2.

The average choice ρ∗({x, y, z}) is outside line segment connecting z with ρ∗({x, y}).
Instead, ρ∗({x, y, z}) is above the line. If we write ρ∗({x, y, z}) as a weighted average

of the vectors x, y and z, then this means that the weight on x, relative to the weight

placed on y, is clearly higher than the relative weight placed on x in ρ∗({x, y}). This

implies a violation of Luce’s IIA for any stochastic choice ρ that rationalizes ρ∗.

So for at least some special cases as illustrated in 2, a violation of path inde-

pendence for the average choice ρ∗ can sometimes imply a violation of IIA for any

rationalizing stochastic choice ρ. However, the example is a red herring, because in

fact there is no direct general relationship between path independence and IIA, and

it is not straightforward to prove Theorem 1 by way of IIA. Consider the violation of

path independence in Figure 3.

Figure 3 exhibits a violation of partial path independence. The figure depicts

the average choice from some subsets of A = {x, y, z, w}, and these choices are in-

compatible with partial path independence. The diagram on the left shows where

ρ∗({x, z, w}) is in conv{x, z, w}, while the diagram in the middle depicts ρ∗({y, z, w})

17



z w

y
x

ρ∗(A \ {y})

z w

y
x

ρ∗(A \ {x})

z w

y
x

Figure 3: Violation of partial path independence; A = {x, y, z, w}.

in conv{y, z, w}. It should be clear, as illustrated in the diagram on the right of

Figure 3, that partial path independence cannot be satisfied because the lines x–

ρ∗(A \ {x}) and y–ρ∗(A \ {y}) do not cross. However, in this case there is no required

violation of IIA. Partial path independence takes conditions on the averages from

smaller sets and imposes restrictions on the averages from larger sets. In fact, our

proof proceeds by induction on the cardinality of the menu, and uses these restric-

tions to argue the inductive step from smaller to larger cardinalities. On the other,

IIA imposes restriction across ratios, and not on averages. It would be surprising if

there was an immediate connection between these different statistics.

Another way to see the difference between the axioms is to consider the gap in the

information encoded into stochastic choice and average choice. While every stochastic

choice reduced to a unique average choice, the reverse association is less crisp as

several stochastic choice functions can rationalize the same average choice. For a

menu of linearly independent vectors, the distribution is identified by the average.

But when the menu is not an affinely independent set (as for all menus with more

than n elements) the background distribution cannot be directly inferred from the

average. For this reason, satisfying path independence is not generally informative of

the veracity of the IIA assumption.

4.2. Plott path independence

Plott (1973) introduced the now-classic version of path independence. In our model,
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Plott’s notion of path independence translates into the following condition:

Plott path independence: If A ∩B = ∅ then

ρ∗(A ∪B) = ρ∗ ({ρ∗(A), ρ∗(B)}) .

It is important to see how our path independence is different from Plott’s. We

require only that ρ∗(A ∪ B) be a strict convex combination of ρ∗(A) and ρ∗(B), but

the weights in this convex combination do not need to coincide with the weights in the

choice from the set {ρ∗(A), ρ∗(B)}. So the elements of A∪B are allowed to influence

the average choice ρ∗(A ∪ B) by way of affecting the weights placed on ρ∗(A) and

ρ∗(B).

Although these two versions of path independence are similar, they are fundamen-

tally different in their implications. We already explained how our version of path

independence crucially allows the weight of ρ∗(A) to depend on the size and utility of

the set A. A more direct way to see the tension is through the required conditions.

As Kalai and Megiddo (1980) and Machina and Parks (1981) already observed, Plott

path independence is incompatible with continuity. Plott’s original version of path

independence and our interiority axiom are alsi mutually incompatible. This follows

as a corollary of Theorem 1 of Kalai and Megiddo (1980) that shows Plott path inde-

pendence implies there exist x, y such that ρ∗(A) = ρ∗({x, y}) which is incompatible

with interiority.

4.3. Continuity and Debreu’s example

The continuity axiom we are using is perhaps not the first such axiom one would think

of (it certainly was not the first we thought of). A stronger axiom would demand that

ρ∗ is continuous, but this is incompatible with the Luce rule.

The reason for the failure relates to the following well-known “blue bus – red bus”

violation of IIA due to Debreu (1960) and Tversky (1972). An agent chooses a mode

of transportation. Choosing x means taking a blue bus while choosing y means taking

a cab. Alternative z is also a bus, but of a colored red rather than blue. Debreu argues

that the presence of z should strictly decrease the relative probability of choosing x

over y, as the agent would consider whether to take a bus or a taxi and then be
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indifferent over which bus to take.8

To see the connection to Debreu’s example, suppose that ρ∗ is continuous Luce

rationalizable, with a continuous function u. Let zn be a sequence in X converging to

x ∈ X. Then

ρ∗({x, y}) 6= 2u(x)x+ u(y)y

2u(x) + u(y)
= lim

n→∞
ρ∗({x, y, zn}).

Thus ρ∗ must be discontinuous.

The lack of continuity of ρ∗ is similar to the blue bus-red bus example. The Luce

model demands that zn be irrelevant for the relative choice of x over y, even when zn

becomes very similar to x. In that sense, the lack of continuity of ρ∗ is related to the

blue bus-red bus phenomenon.

4.4. Sampling error

Theoretical studies of stochastic choice assume that choice probabilities are observed

perfectly. But we intend our axioms to be useful as empirical tests, so that one can

empirically decide whether observed data are consistent with the theory.

In an empirical study, however, choice probabilities must be estimated from sample

frequencies. In the individual interpretation of the stochastic choice model (see the

discussion in the Introduction), one agent would make a choice repeatedly from a set

of available alternatives. This allows us to estimate the stochastic choice, but not to

perfectly observe it. In the population interpretation (again, see the Introduction)

we can observe the choices of a group of agents. The group may be large, and the

fraction with which an agent makes a choice may be close to the population fraction

of that choice, but there is likely some important randomness due to sampling. Here

we want to argue that our axiomatization is better suited to dealing with such errors.

In his discussion of the Luce mode, Luce (1959) makes the point that testing his

axiom, IIA, requires a large sample size. We follow up on Luce’s remark and compare

the efficiency of the IIA test statistic with the test statistic needed to test for partial

path independence, the average of the choices.

Fix a set of alternatives A. Suppose that the population choices from A are given

8Debreu actually used an example of two different recordings of the same Beethoven symphony
vs. a suite by Debussy.
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by p ∈ ∆(A), which comes from some continuous Luce rule u : X → R++. We do not

observe p but instead a sample X1, . . . , Xk of choices, with Xi ∈ A for i = 1, . . . , n.

TheXi are independent, and distributed according to p. The probability p is estimated

from the empirical distribution:

pkx =
|i : Xi = x|

k
.

We have two alternative routes for testing the Luce model:

1. Test the model using Luce’s original axiomatization, by computing relative prob-

abilities
pkx
pky
,

for x, y ∈ A.

2. Test the model using our axiomatization, by computing average choice:

µk =
∑
x∈A

xpkx

We argue that option (2) is better for two reasons. One is that in small samples

it is more reliable to use the average than to use relative probabilities. The other is

that, even in a large sample, the test statistic in (1) can have a very large variance

relative to the test statistic in (2). Specifically, for any M there is an instance of the

Luce model in which the asymptotic variance of the statistic in (1) is M times the

asymptotic variance of the statistic in (2).

We proceed to formalize the second claim.

Standard calculations yield:

√
k

(
pkx
pky
− px
py

)
d−→ N

(
0,

2p2x
p2y

)
.

On the other hand,
√
k(µk − µ)

d−→ N(0,Σ), where

Σ = (σl,h) and |σl,h| ≤ max{xlxk : x ∈ A}.
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It is obvious that the entries of Σ are bounded and the asymptotic variance of

pkx/p
k
y can be taken to be as large as desired by choosing a Luce model in which

u(x)/u(y) is large. So for any M there is a Luce model for which the asymptotic

variance of pka/p
k
b relative to max{σl,h}, the largest element of Σ, is greater than M .

5. Proof of Theorem 1

5.1. Definitions from convex analysis

Let x, y ∈ Rn. The line passing through x and y is the set {x + θ(y − x) : θ ∈ R}.
The line segment joining x and y is the set {x+ θ(y− x) : θ ∈ [0, 1]}. A subset of Rn

is affine if it contains the line passing through any two of its members. A subset of

Rn is convex if it contains the line segment joining any two of its members.

If A is a subset of Rn, the affine hull of A is the intersection of all affine subsets

of Rn that contain A. An affine combination of members of A is any finite sum∑l
i=1 λixi with λi ∈ R and xi ∈ A i = 1, . . . , l and

∑l
i=1 λi = 1. The affine hull of

A is equivalently the collection of all affine combinations of its members. If A is a

subset of Rn, the convex hull of A is the intersection of all convex subsets of Rn that

contain A. A set A is affinely independent if none of its members can be written as

an affine combination of the rest of the members of A.

A point x ∈ A is relative interior for A if there is a neighborhood N of x in Rn

such that the intersection of N with the affine hull of A is contained in A. The relative

interior of A is the set of points x ∈ A that are relative interior for A.

A polytope is the convex hull of a finite set of points. The dimension of a polytope

P is l−1 if l is the largest cardinality of an affinely independent subset of A. A vector

x ∈ A is an extreme point of a set A if it cannot be written as the convex combination

of the rest of the members of A. A face of a convex set A is a convex subset F ⊆ A

with the property that if x, y ∈ A and (x + y)/2 ∈ F then x, y ∈ F . If F is a face

of a polyope P , then F is also a polytope and there is α ∈ Rn and β ∈ R such that

P ⊆ {x ∈ Rn : α · x ≤ β} and F = {x ∈ P : α · x = β}. If a polytope has dimension

l then it has faces of dimension 0, 1, . . . , l (Corollary 2.4.8 in Schneider (2013)).
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5.2. Proof

The following axiom seems to be weaker than partial path independence, but it is not.

One-point path independence: If x is an extreme point of A then

ρ∗(A) ∈ conv0{x, ρ∗(A \ {x})}.

We use one-point path independence in the proof of sufficiency in Theorem 1.

Since partial path independence is satisfied by any continuous Luce rationalizable

average choice, one-point path independence and path independence are equivalent

(at least under the hypothesis of continuity).

We now proceed with the formal proof.

Lemma 3. Interiority and partial path independence imply one-point path indepen-

dence.

Proof. Suppose that x is an extreme point of A. If {x} = A, then the result holds

obviously. Consider the case where there exists y ∈ A such that y 6= x. By partial

path independence, we know

ρ∗(A) ∈ conv{x, ρ∗(A \ {x})}.

So to show the lemma, it suffices to show that ρ∗(A) 6∈ {x, ρ∗(A \ {x})}. By way

of contradiction, suppose firstly that ρ∗(A) = x. Since there exists y ∈ A such that

y 6= x, ρ∗(A) = x 6∈ conv0A. This contradicts with interiority.

Suppose secondly that ρ∗(A) = ρ∗(A \ {x}). Since x is an extreme point, ρ∗(A) =

ρ∗(A \ {x}) 6∈ conv0A. This again contradicts with interiority.

The second lemma establishes necessity, and is also needed in the proof of suffi-

ciency.

Lemma 4. If ρ∗ is continuous Luce rationalizable, then it satisfies continuity, inte-

riority, and partial path independence.
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Proof. Interiority and continuity of the average choice are direct consequences of the

positivity and continuity of u. Partial path independence is also simple: Note that

when convA ∩ convB = ∅ then A and B are disjoint. So it follows that(∑
x∈A

u(x) +
∑
y∈B

u(y)

)
ρ∗(A ∪B) =

∑
x∈A

u(x)x+
∑
x∈B

u(x)x

= ρ∗(A)
∑
x∈A

u(x) + ρ∗(B)
∑
x∈B

u(x).

Since A ∩B = ∅,
ρ∗(A ∪B) ∈ conv{ρ∗(A), ρ∗(B)}.

To show sufficiency, we will prove one preliminary lemma.

Lemma 5. Suppose that ρ∗ satisfies one-point path independence. For any A, then

there exists {λz}z∈A such that ρ∗(A) =
∑

z∈A λzz and λz > 0 for all z ∈ A.

Proof. The proof is by induction on |A|. Consider any A such that |A| = 2. Then

A = {x, y} for some x, y such that x 6= y. Since both x and y are extreme points,

by one-point path independence, ρ∗({x, y}) = λx + (1 − λ)y for some λ ∈ (0, 1), as

desired.

In general, suppose that the claim holds for A such that |A| ≤ k; that is, ρ∗(A) =∑
z∈A λzz and λz > 0 for any point z ∈ A.

Fix A such that |A| = k + 1 and choose any extreme point x ∈ A. By one-point

path independence and the induction hypothesis, there exists µ ∈ (0, 1) such that

ρ∗(A) = µρ∗(A \ x) + (1−µ)x =
∑

y∈A\x µλyy+ (1−µ)x, where all of the coefficients

are positive.

The proof of the sufficiency of the axioms relies on two key ideas. One is that when

A is affinely independent, ρ∗(A) has a unique representation as a convex combination

of the elements of A. Affine independence holds for sets A of small cardinality, and

it allows us to construct a utility giving a Luce representation for such small sets.

The other idea is the following lemma, which is used to show that one-point path

independence determines average choice uniquely. We use the lemma to finish our

proof by induction on the cardinality of the sets A.
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Lemma 6. Suppose that ρ∗ satisfies one-point path independence. Let A be a finite

set with |A| ≥ 3, and let x, y ∈ A with x 6= y. If x and y are extreme points of A and

there is a proper face F of conv(A) with dim(F ) ≥ 1 and x, y ∈ F , then:

conv0({x, ρ∗(A \ {x})}) ∩ conv0({y, ρ∗(A \ {y})})

is a singleton.

Proof. First, ρ∗(A) ∈ conv0{x, ρ∗(A \ {x})} and ρ∗(A) ∈ conv0{y, ρ∗(A \ {y})}, as ρ∗

satisfies one-point path independence. So

∅ 6= conv0{x, ρ∗(A \ {x})} ∩ conv0{y, ρ∗(A \ {y})}.

Since x, y ∈ F there is a vector p and a scalar α with F ⊆ {z ∈ X : p ·z = α} –one

of the hyperplanes supporting convA– and such that convA ⊆ {z ∈ X : p · z ≥ α}.
We shall prove that if there is

z1, z2 ∈ conv0{x, ρ∗(A \ {x})} ∩ conv0{y, ρ∗(A \ {y})},

with z1 6= z2, then A ⊆ F , contradicting that F is a proper face of conv(A).

Now, z1, z2 ∈ conv0{x, ρ∗(A \ {x})} implies that there is θx, θρ∗(A\{x}) ∈ R such

that x = z2 + θx(z
1− z2) and ρ∗(A\{x}) = z2 + θρ∗(A\{x})(z

1− z2). Similarly, we have

y = z2 + θy(z
1 − z2) and ρ∗(A \ {y}) = z2 + θρ∗(A\{y})(z

1 − z2).
As a consequence then of p · x = α = p · y we have

p · z2 + θxp · (z1 − z2) = p · z2 + θyp · (z1 − z2).

Since θx 6= θy (as x 6= y) we obtain that p · (z1 − z2) = 0. So

α = p · x = p · z2 + p · θx(z1 − z2) = p · z2.

Then

p · ρ∗(A \ {x}) = p · (z2 + θρ∗(A\{x})(z
1 − z2)) = p · z2 = α.

But ρ∗(A \ {x}) =
∑

z∈A\{x} λzz for some λz > 0 for all z ∈ A \ {x}, by Lemma 5.

Then p · z ≥ α for all z ∈ A implies that p · z = α for all z ∈ A \ {x}.
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This means that A ⊆ F , contradicting that F is a proper face of convA.

The proof of sufficiency proceeds by first constructing a stochastic choice ρ, then

arguing that it is a Luce rule that rationalizes ρ∗. In Step 1, we define ρ(A) for A

with |A| = 2. In Step 2, we define ρ(A) for A with |A| = 3. In Step 3 and 4, we

define ρ on all of A by constructing a continuous Luce rule, and using this rule to

define ρ. The average choice defined from the Luce rule must be path independent,

so Lemma 6 is used to show that the average choice from the constructed Luce rule

coincides with ρ∗.

Step 1: Let x, y ∈ X, x 6= y. Since ρ∗({x, y}) is in the relative interior of {x, y}
(Lemma 5) there is a unique θ ∈ (0, 1) with ρ∗({x, y}) = θx + (1 − θ)y. Define

ρ(x, {x, y}) = θ and ρ(y, {x, y}) = 1− θ.
Moreover, by Continuity of ρ∗, we have

ρ(xn, {xn, y})→ ρ(x, {x, y}), ρ(y, {xn, y})→ ρ(y, {x, y}) as xn → x. (2)

Thus we have defined ρ(A) for A with |A| = 2, and established that ρ satisfies (2).

Step 2: Now turn to A with |A| = 3. Let A = {x, y, z}.
Case 1: Consider the case when the vectors x, y and z are affinely independent.

Such collections of three vectors exist because n ≥ 2. Then there are unique ρ(x,A)

ρ(y, A) and ρ(z, A) (non-negative and adding up to 1) such that ρ∗(A) = xρ(x,A) +

yρ(y, A) + zρ(z, A). Since ρ∗(A) is in the relative interior of conv(A) (Lemma 5) in

fact, ρ(x,A), ρ(y, A), ρ(z, A) > 0.

By one-point path independence, there is θ ∈ (0, 1) such that

ρ∗(A) = θz + (1− θ)ρ∗(A \ {z}) = θz + (1− θ)[xρ(x, {x, y}) + yρ(y, {x, y})].

The vectors x, y and z are affinely independent, so the weights ρ(x,A), ρ(y, A) and

ρ(z, A) are unique. This implies that ρ(x,A) = (1 − θ)ρ(x, {x, y}) and ρ(y, A) =

(1− θ)ρ(y, {x, y}). Hence
ρ(x,A)

ρ(y, A)
=
ρ(x, {x, y})
ρ(y, {x, y})

. (3)

In the same way, we can show ρ(z,A)
ρ(y,A)

= ρ(z,{z,y})
ρ(y,{z,y}) .

Case 2: Consider now the case when the vectors x, y and z are not affinely indepen-
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dent. Choose a sequence {zn} such that

a) x, y and zn are affinely independent for all n,

b) z = limn→∞ zn,

c) and ρ({x, y, zn}) converges.

To see that it is possible to choose such a sequence, note that x, y and zn are

affinely independent if and only if x− zn and y− zn are not collinear. Now x− z and

y − z are collinear, so there is θ ∈ R with x− z = θ(y − z). For each n the ball with

center z and radius 1/n has full dimension, so the intersection of this ball with the

complement in X of the line passing through x and z (which is also the line passing

through y and z) is nonempty. By choosing zn in this ball, but outside of the line

passing through x and z, we obtain a sequence that converges to z. Then we have

that

(x− zn)i
(y − zn)i

=
θ(y − z)i + (z − zn)i
(y − z)i + (z − zn)i

=
θ + (z−zn)i

(y−z)i

1 + (z−zn)i
(y−z)i

,

a ratio that is not a constant function of i, as zn is not on the line passing through y and

z. Finally, by going to a subsequence if necessary, we can ensure that condition c) holds

because the simplex is compact.9 Define ρ({x, y, z}) to be the limit of ρ({x, y, zn}).
In Case 1, we have shown that Equation (3) hold for sets of three affinely inde-

pendent vectors. So ρ(x, {x, y, zn})/ρ(y, {x, y, zn}) = ρ(x, {x, y})/ρ(y, {x, y}) for all

n. Hence, ρ(x,A)/ρ(y, A) = ρ(x, {x, y})/ρ(y, {x, y}). In particular, this means that

ρ(x,A), ρ(y, A) ∈ (0, 1), as ρ(x, {x, y}), ρ(y, {x, y}) ∈ (0, 1).

Again, the fact that Equation (3) hold for sets of three affinely independent vectors

implies:
ρ(zn, {x, y, zn})
ρ(y, {x, y, zn})

=
ρ(zn, {zn, y})
ρ(y, {zn, y})

.

Remember by c), ρ(zn,{x,y,zn})
ρ(y,{x,y,zn}) →

ρ(z,A)
ρ(y,A)

; by (2), ρ and ρ(zn,{zn,y})
ρ(y,{zn,y}) →

ρ(z,{z,y})
ρ(y,{z,y}) as n→∞.

Then
ρ(z, A)

ρ(y, A)
=
ρ(z, {z, y})
ρ(y, {z, y})

.

In particular, ρ(z, A) ∈ (0, 1) because ρ(z, {z, y}) ∈ (0, 1).

9For all n, ρ({x, y, zn}) ∈ {(a, b, c) ∈ R3|a, b, c ≥ 0 and a+ b+ c = 1}
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Thus we have established that, for any three distinct vectors x, y, z ∈ X (affinely

independent or not), Equation (3) holds with A = {x, y, z}.
Step 3: Now we turn to the definition of ρ onA. The definition proceeds by induction.

We use (3) to define a utility function u : X → R++ and a Luce rule. Then we show

by induction, and using Lemma 6, that ρ rationalizes ρ∗.

Fix y0 ∈ X. Let u(y0) = 1. For all x ∈ X, let u(x) = ρ(x,{x,y0})
ρ(y0,{x,y0}) . Note that u

is a continuous function, as x 7→ (ρ(x, {x, y0}), ρ(y0, {x, y0})) is continuous, and that

u > 0. By Equation (3), we obtain

u(x)

u(y)
=

ρ(x, {x, y0})
ρ(y0, {x, y0})

ρ(y0, {y, y0})
ρ(y, {y, y0})

=
ρ(x, {x, y})
ρ(y, {x, y})

=
ρ(x, {x, y, z})
ρ(y, {x, y, z})

,

for all x, y, z ∈ X.

Let ρu(A) be the Luce rule defined by u: for all x ∈ A ∈ A

ρu(x,A) =
u(x)∑
y∈A u(y)

.

This definition of ρu coincides with the definition of ρ we have given for A with

|A| ≤ 3 because

ρu(x, {x, y})
ρu(y, {x, y})

=
u(x)

u(y)
=
ρ(x, {x, y})
ρ(y, {x, y})

and
ρu(x, {x, y, z})
ρu(y, {x, y, z})

=
u(x)

u(y)
=
ρ(x, {x, y, z})
ρ(y, {x, y, z})

for all x, y, z ∈ X. So we simply write ρ instead of ρu.

Note also that, by definition of ρ,

ρ∗({x, y}) = xρ(x, {x, y}) + yρ(y, {x, y})

and ρ∗({x, y, z}) = xρ(x, {x, y, z}) + yρ(y, {x, y, z}) + zρ(z, {x, y, z})
(4)

for all x, y, z ∈ X. This establishes the desired result for A with |A| ≤ 3.

Step 4: Let

ρ̄(A) =
∑
x∈A

xρu(x,A).

We shall prove that ρ̄(A) = ρ∗(A) for all A ∈ A, which finishes the proof of the

theorem.

The proof proceeds by induction on the size of A. We have established (see Equa-
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tion (4)) that ρ̄(A) = ρ∗(A) for |A| ≤ 3. Suppose then that ρ̄(A) = ρ∗(A) for all

A ∈ A with |A| ≤ k. Let A ∈ A with |A| = k+ 1. We shall prove that ρ̄(A) = ρ∗(A).

Case 1: Suppose first that dim(convA) ≥ 2. Then by Corollary 2.4.8 in Schneider

(2013) there is a proper face F of conv(A) with dimension ≥ 1. Let x, y ∈ A be

two distinct extreme points of conv(A), such that x, y ∈ F . Such x and y exist

because F has dimension at least 1. Note that ρ̄(A \ {x}) = ρ∗(A \ {x}), we have

ρ̄(A \ {y}) = ρ∗(A \ {y}) by the inductive hypothesis. So the intersections

conv0({x, ρ̄(A \ {x})}) ∩ conv0({y, ρ̄(A \ {y})})
= conv0({x, ρ∗(A \ {x})}) ∩ conv0({y, ρ∗(A \ {y})})

(5)

coincide. Lemma 6 implies that the intersection in (6) is a singleton.

By Lemma 4, ρ̄ satisfies partial path independence. Since ρ̄ and ρ∗ both satisfy

partial path independence on A ∈ A,

ρ̄(A) ∈ conv0({x, ρ̄(A \ {x})}) ∩ conv0({y, ρ̄(A \ {y})}) (6)

and

ρ∗(A) ∈ conv0({x, ρ∗(A \ {x})}) ∩ conv0({y, ρ∗(A \ {y})}). (7)

Therefore, by (5), (6), and (7), we have ρ̄(A) = ρ∗(A).

Case 2: Consider the case when dim(A) = 1. Let z ∈ A be an extreme point of

convA. Let {zn} be a sequence with zn → z, such that A \ {z} ∪ {zn} has dimension

≥ 2. This is possible because X has dimension larger than 3. The we obtain that

ρ̄(A) = ρ∗(A) by continuity of ρ∗ and ρ̄.

Finally, we prove Remark ??. Let ρ∗ be a continuous Luce rationalizable with

u ∈ RX
++ and v ∈ RX

++. Fix an element x ∈ X. Normalize u and v by u(x) = 1 = v(x).

Suppose by way of contradiction that u 6= v. This means that u(y) 6= v(y) for some

y ∈ X. Then,
x+ u(y)y

1 + u(y)
= ρ∗({x, y}) =

x+ v(y)y

1 + v(y)
.

This implies that (x + u(y)y)(1 + v(y)) = (x + v(y)y)(1 + u(y)), equivalently (x −
y)(u(y)− v(y)) = 0, which is a contradiction.
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6. Proof of Theorem 2

Lemma 7. If ρ∗ is continuous linear Luce rationalizable, then it satisfies indepen-

dence.

Proof. Let ρ∗ be continuous linear Luce rationalizable, with u(x) = f(v ·x). We check

that it satisfies independence. Note first that:

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = µ(λx+ (1− λ)z) + (1− µ)(λy + (1− λ)z)

= λ(µx+ (1− µ)y) + (1− λ)z,

where

µ =
f(v · (λx+ (1− λ)z))

f(v · (λx+ (1− λ)z)) + f(v · (λy + (1− λ)z))
.

Suppose first that u(x) = u(y). Then v · x = v · y, as f is monotone increasing.

Then f(v · (λx + (1 − λ)z)) = f(v · (λy + (1 − λ)z)). This means that µ = 1/2. So

µx+ (1− µ)y = ρ∗({x, y}), because u(x) = u(y) implies that ρ∗({x, y}) = 1
2
x+ 1

2
y.

Let ρ∗ be continuous Luce rationalizable with utility function u. Write x ∼ y when

u(x) = u(y).

Lemma 8. If ρ∗ satisfies independence then it satisfies the following property:

x ∼ y iff ∀λ ∈ R∀z ∈ X[λx+(1−λ)z, λy+(1−λ)z ∈ X ⇒ λx+(1−λ)z ∼ λy+(1−λ)z]

Proof. Let x ∼ y, λ ∈ R and z ∈ X. Let µ be such that

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = µ(λx+ (1− λ)z) + (1− µ)(λy + (1− λ)z)

= λ(µx+ (1− µ)y) + (1− λ)z.

Then independence implies that

λ(µx+(1−µ)y)+(1−λ)z = ρ∗({λx+(1−λ)z, λy+(1−λ)z}) = λρ∗({x, y})+(1−λ)z,
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and thus µx+ (1− µ)y = ρ∗({x, y}). Since x ∼ y we must have µ = 1/2. Hence

1

2
=

u(λx+ (1− λ)z)

u(λx+ (1− λ)z) + u(λy + (1− λ)z)
.

Therefore λx+ (1− λ)z ∼ λy + (1− λ)z.

Conversely, if λx + (1 − λ)z ∼ λy + (1 − λ)z for all λ and all z then x ∼ y by

continuity of u and the fact that λx+ (1− λ)z, λy + (1− λ)z ∈ X.

The property in Lemma 8 is weaker than the standard von-Neuman Morgenstern

independence property (restricted to λ ∈ (0, 1)). Using Lemma 8, however, we can

establish the stronger independence property, as stated in the next lemma. Then

the proof of Theorem 2 follows from the expected utility theorem: the preference

relation represented by u is a weak order, it satisfies continuity (as u is continuous),

and independence.

Lemma 9. If ρ∗ is continuous Luce rationalizable, and it satisfies independence, then

it satisfies the following property

u(x) ≥ u(y) iff ∀λ ∈ [0, 1]∀z ∈ X u(λx+ (1− λ)z) ≥ u(λy + (1− λ)z).

Proof. Note that by Lemma 8, independence implies that

x ∼ y iff x+ θ(z − x) ∼ y + θ(z − y)

for all scalars θ and for all z such that x+ θ(z − x), y + θ(z − y) ∈ X.

Suppose towards a contradiction that u(x) ≥ u(y) but that u(λx + (1 − λ)z) <

u(λy + (1− λ)z). By continuity of u there is λ∗ < λ such that u(λ∗x + (1− λ∗)z) =

u(λ∗y + (1− λ∗)z).

Let λ∗x+(1−λ∗)z = x′. Then x = x′− 1−λ∗
λ∗

(z−x′). Similarly, y = y′− 1−λ∗
λ∗

(z−y′)
where λ∗y+(1−λ∗)z = y′. Then independence and u(x′) = u(y′) implies that u(x) =

u(y). Then u(λx+ (1− λ)z) < u(λy + (1− λ)z) is a violation of independence.
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