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Abstract

We develop an axiomatic theory of random choice that builds on Luce’s

(1959) model to incorporate a role for perception. We identify agents’ “per-

ception priorities” from their violations of Luce’s axiom of independence from

irrelevant alternatives. Using such perception priorities, we adjust choice

probabilities to account for the effects of perception. Our axiomatization

requires that the agents’ adjusted random choice conforms to Luce’s model.

The theory can explain the attraction, compromise, similarity effects, and vi-

olations of stochastic transitivity, which are very well-documented behavioral

phenomena in individual choice. We also discuss implications of the model

related the effects of having to choose on what choice is made.

1 Introduction

We study the role of perception in individual random choice. The main novelty is

to identify a perception priority order from an agent’s violations of independence

from irrelevant alternatives (IIA), the rationality axiom behind Luce’s (1959) model

of choice. In other words, we attribute any violation of Luce’s model to the role of

perception. Our model, a perception-adjusted Luce model (PALM), can explain the
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attraction, compromise, and similarity effects: these are the best known deviations

from Luce’s model in experiments.

In our model, an agent perceives alternatives differently. In particular, she goes

through the different alternatives in sequence, following a perception priority order.

The perception priority order could represent differences in familiarity, or salience,

of the different objects of choice. In Psychology, there is clear evidence of the effects

of perception, namely salience and perception, on decision making: see for example

Shaw and Shaw (1977), Milosavljevic et al. (2012), Towal et al. (2013), Sheng et al.

(2005), and Ratneshwar et al. (1987). In our model, each time an alternative is

under consideration, it may be chosen with a probability that is obtained from

Luce’s model. As a result of the priority order, if one adds alternatives to a choice

set, the relative probabilities of choosing the various alternatives, may change.

The main idea is that high priority alternatives are hurt by adding options. Sup-

pose that you add an alternative z to the choice set consisting of x and y. In

principle, the addition of z should intuitively decrease the probability of choosing

x, and the probability of choosing y (this monotonicity property is called “regular-

ity” in the literature). But suppose that x is more salient than y, so it has higher

priority and is therefore considered before y. Then the addition of z has an indirect

positive effect on y, in addition to the initial negative effect: Given that y has lower

priority than x, y will only be chosen when x is not chosen, and the addition of z has

decreased the probability that x is going to be chosen. This is good for y. Hence,

the addition of z should hurt x relatively more than y.

Now, in our paper we use the idea we have just mentioned as a way of inferring

the perception priority order. The priority order is not observable, but we can

use violations of Luce’s IIA to infer the priority order. The IIA axiom says that the

probability of choosing x relative to that of choosing y is not affected by the presence

of alternatives other than x or y. We use an agent’s violations of IIA to identify his

perception priority order by attributing the effect of additional alternatives on the

relative choice probabilities to a priority ranking.
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We adjust the agent’s random choice using his perception priority order. The

priority order defines a hazard rate: the probability of choosing an object, conditional

on not choosing any of the objects with higher perception priority. So hazard rates

incorporate the effects of perception.

The resulting model of choice is termed the perception-adjusted Luce model

(PALM). PALM connects perception and choice probabilities based on the idea

that perception priority captures the direction of violations of Luce’s IIA model. In

PALM, an agent who is faced with a choice problem considers the different alterna-

tives in order of their priority. Each time one alternative is considered, it is chosen

with probability dictated by an underlying Luce model. So the probability that a

given alternative is chosen depends both on the its utility (as in Luce) and on its

priority in perception.

We show that PALM is characterized by three axioms on choice behavior. The

first axiom requires that the agent’s perception priority order be well-behaved: it

must be complete and transitive. The other two axioms are imposed on hazard

rates. The effect of perception on IIA has been accounted for in the hazard rates, so

we require that hazard rates satisfy IIA. We also assume that hazard rates satisfy

a second standard property of Luce’s model, the regularity axiom. The regularity

axiom says that the probability of choosing x from a set A cannot be larger than

the probability of choosing x from a subset of A.

Despite having a tight axiomatic characterization, PALM is very flexible. PALM

can explain many behavioral phenomena, including some of the best known viola-

tions of Luce’s model in experiments. It can explain attraction effects, compromise

effects, similarity effects, and violations of stochastic transitivity: Sections 4.2-4

have all the details. Some of these effects stem from violations of the regularity

axiom: PALM can violate the regularity axiom, as regularity is only imposed on

hazard rates. In Section 5, we use PALM to explain recent experimental findings

on how forcing agents to make a choice affects their choices. Moreover, we discuss

necessary and sufficient conditions to have positive correlation between utility and
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perception.

It may be instructive to illustrate how PALM can accommodate the attraction

effect. Doyle et al. (1999) is a representative experiment in evidence of the attraction

effect: Doyle et al. present customers in a grocery store in the UK of a choice of

baked beans. The first choice is between two types of baked beans: x and y; x is

Heinz baked beans, while y is a local cheap brand called Spar. In this problem y

was chosen 19% of the time. The authors then introduced a third option, z, which

was a more expensive version of the local brand Spar. After z was introduced, y

was chosen 33% of the time. This pattern cannot be explained by Luce’s model;

indeed it cannot be explained by any model of random utility. It can, however, be

explained by PALM.

Suppose that perception is related to the familiarity of the beans. Since x is the

well-known Heinz brand, it is likely to be the highest priority alternative. Also, y is at

least as familiar as z because y and z are the same brands, and z is introduced later.

With this perception priority, if the utility of x is large enough, PALM produces the

attraction effect in Doyle et al.’s experiment.

As we explained above, the addition of z hurts in principle both x and y, but,

while x does not benefit from y’s potential decrease, y does benefit from the decrease

in the probability of choosing x because y has lower priority than x. The magnitude

of this positive effect depends on the utility of x; if the utility of x is large enough,

then the indirect positive effect overcomes the direct negative effect, and that is how

PALM produces an increase in the probability of choosing y.

There are models within the economic axiomatic literature that explain some of

these deviations from Luce’s model. We are not aware of any existing model that

can explain them all. Section 6 discusses the related literature.
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2 Primitives and Luce’s model

Let X be a nonempty set of alternatives, and A be the set of finite and nonempty

subsets of X.1 We model an agent who makes a probabilistic choice from A∪ {x0},

with A ∈ A . The element x0 6∈ X represents an outside option that is always

available to the agent. Choosing the outside option can simply mean that the agent

does not make a choice. We shall also allow the agent to never choose the outside

option x0: the probability of choosing x0 can be zero for all A.

Definition: A function ρ : X ∪ {x0} × A → [0, 1] is called a stochastic choice

function if ∑
a∈A∪{x0}

ρ(a,A) = 1

for all A ∈ A . A stochastic choice function ρ is nondegenerate if ρ(a,A) ∈ (0, 1) for

all A ∈ A with |A| ≥ 2 and a ∈ A.

We write ρ(B,A) for
∑

b∈B ρ(b, A), and say that ρ(∅, A) = 0.

Note that we allow for ρ(x0, A) = 0. So it is possible that the outside option is

never chosen with positive probability, even when ρ is nondegenerate.

Definition: A stochastic choice function ρ satisfies Luce’s independence of irrele-

vant alternatives (IIA) axiom at a, b ∈ X if, for any A ∈ A ,

ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a,A)

ρ(b, A)
.

Moreover, ρ satisfies IIA if ρ satisfies IIA at a, b for all a, b ∈ X.

Luce (1959) proves that, if a non-degenerate stochastic choice function satisfies

IIA, then it can be represented by the following model (also referred to as multino-

mial logit):

Definition: ρ satisfies Luce’s model if there exists a real-valued function u on X∪A

1Our results hold for smaller classes of subsets of X.
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such that

ρ(a,A) =
u(a)∑

a′∈A u(a′) + u(A)
. (1)

Luce presented his model in the absence of an outside option. When ρ(x0, A) = 0,

then u(A) = 0. Here we allow for an outside option, and present the Luce model

in which not choosing in A is possible. The number u(A) can be interpreted as

the utility of abstaining from choosing an element from A. For later reference it is

important to note that

u(A) =
∑
a∈A

u(a)

(
1∑

a∈A ρ(a,A)
− 1

)
. (2)

When u(A) = 0 for all A, we obtain Luce’s model without an outside option.

Luce’s model without an outside option satisfies a monotonicity property: ρ(x,A) ≥

ρ(x,B), if A ⊂ B. This property is called regularity. In general, when an outside

option is present, we need an assumption on u in order for Luce’s model to satisfy

regularity. Luce’s model with an outside option may violate regularity.

3 Axioms

We introduce the perception priority order derived from ρ, and the resulting “per-

ception adjusted” random choice function: the hazard rate function.

Perception priority. We capture the role of perception through a weak order

%. The idea is that when a � b, then a tends to be perceived sooner than b. In

particular, we denote by %∗ the (revealed) priority relation that we obtain from the

data in ρ. To define %∗, first we identify the directly revealed priority relation %0

from ρ. Then %∗ is defined as the transitive closure of %0.

We shall attribute all violations of IIA to the role of perception. That is, we

require that a ∼0 b when IIA holds at a and b. In other words, when two alternatives

a and b do not exhibit a violation of IIA then we impose that they are equivalent

from the view point of perception: they have the same perception priority.
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In contrast, if a and b are such that IIA fails at a and b, then we shall require

that a and b are strictly ordered by �0: we shall require that either a �0 b or that

b �0 a. Which possibility of the two, a �0 b or b �0 a, is determined by the nature

of the violation of IIA.

Suppose that IIA fails at a and b because there is some c such that

ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

. (3)

In words, the presence of c lowers the probability of choosing a relative to that of

b. When does adding an option hurt one alternative more than another? We claim

that high priority alternatives are hurt by adding options. The reason is that, by

adding certain alternatives c we are “muddying the waters.” We are making the

choice between a and b less clear than before, and thus diluting the advantage held

by a over b.

As we explained in the introduction, we have in mind a model where perception

priority dictates the order in which alternatives are considered. Adding c to {a, b}

would in principle decrease the probability of choosing both a and b; but when a has

higher priority than b, then the very fact that a’s probability decreases means that

b becomes more likely. The alternative b is only chosen when a is not chosen, so the

decrease in the probability of choosing a increases the probability of choosing b. Of

course, the initial effect of adding c on choosing b is still negative, so the net effect on

the probability of choosing b is not determined. However, we know unambiguously

that ρ(a, {a, b})/ρ(b, {a, b}) > ρ(a, {a, b, c})/ρ(b, {a, b, c}). And thus the direction

of violation of Luce’s IIA is dictated by perception priority.

Definition: Let a and b be arbitrary elements in X.

(i)

a ∼0 b if
ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X;
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(ii)

a �0 b if
ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X such that c �0 a and c �0 b, and if there is at least one such c. We

write a %0 b if a ∼0 b or a �0 b.

(iii) Define %∗ as the transitive closure of %0: that is, a %∗ b if there exist c1, . . . , ck ∈

X such that

a %0 c1 %
0 · · · ck %0 b.

The binary relation %∗ is called the revealed perception priority derived from ρ.

We shall impose the following condition on ρ:

Axiom (Weak Order) The relation %∗ derived from ρ is a weak order.

Hazard rate. The second important component of our analysis is the hazard rate

function. The hazard rate is the probability of choosing an object, conditional on

not choosing any of the objects with higher perception priority.

Definition (Hazard Rate): For all a ∈ X and A ∈ A , define

q(a,A) =
ρ(a,A)

1− ρ(Aa, A)
,

where Aa = {b ∈ A|b �∗ a}, A ∈ A and a ∈ A. q is called ρ’s hazard rate function.

We ascribe all violations of IIA to the role of perception, and consider the hazard

rate function to be a sort of adjusted choice probability. Hazard rates are adjusted

for the role of perception, and hence for the phenomena that in our theory lie

behind violations of IIA. We shall therefore impose IIA and regularity as conditions

on hazard rates.

Axiom (Hazard Rate IIA) The hazard rate function q satisfies Luce’s IIA.

Axiom (Hazard Rate Regularity) q(a, {a, b}) ≥ q(a, {a, b, c}), for all a, b, c ∈ X;

and q(a, {a, b}) > q(a, {a, b, c}) when b �0 c.
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In the regularity axiom above, the first condition is standard. In the second

condition, q(a, {a, b}) > q(a, {a, b, c}) is only required when b �0 c. This is because

if b ∼0 c, then adding c does not affect the decision maker’s perception priority so

that it does not affect the corrected choice probability.

4 Theorem

A PALM decision maker is described by two parameters: a weak order % and a

utility function u. She perceives each element of a set A sequentially according

to the perception priority %. Each perceived alternative is chosen with probability

described by µ, a function that depends on utility u according to Luce’s formula (1).

Formally, the representation is as follows.

Definition: A perception-adjusted Luce model (PALM) is a pair (u,%) of a weak

order % on X, and a function u : X ∪A → R such that

ρ(a,A) = µ(a,A)
∏

α∈A/%:α�a

(1−
∑

c∈A: c∈α

µ(c, A)), (4)

where

µ(a,A) =
u(a)∑

b∈A u(b) + u(A)
.

The notation A/ % is standard: A/ % is the set of equivalence classes in which

% partitions A. That is, (i) if A/ %= {αi}i∈I , then ∪i∈Iαi = A; and (ii) x ∼ y if

and only if x, y ∈ αi for some i ∈ I. The notation α � a means that x � a for all

x ∈ α.

For any PALM (u,%), we denote by ρ(u,%) the stochastic choice defined through (4).

(When there is no risk of confusion, we write ρ instead of ρ(u,%).)

The PALM has a procedural interpretation. Consider the following procedure.

First, take the highest priority alternatives of the menu A, and choose each of them

with Luce probability (µ(·, A)). If none of them are chosen, then move on to the

second highest priority alternatives and choose each of them with Luce probability.

9



And so on and so forth.

For example, consider the menu A = {x, y, z} with x � y � z. In the PALM,

the agent first looks at x and chooses it with Luce probability µ(x,A). Second, if

x is not chosen, she moves on to y and chooses it with Luce probability µ(y, A).

So the probability of choosing y is µ(y, A)(1 − µ(x,A)). Finally, the probability

of choosing z is equal to µ(z, A)(1 − µ(x,A))(1 − µ(y, A)). If, instead of having

x � y � z, we have that x ∼ y � z then the probability of choosing z is equal to

µ(z, A)(1−µ(x,A)−µ(y, A)). The idea is that x and y are perceived, and considered,

simultaneously. So the probability of choosing an option that has higher priority

than z is µ(x,A) + µ(y, A).

Before stating the theorem, we discuss two properties of a PALM model. Firstly,

we are interested in stochastic choice for which µ satisfies regularity. As with Luce’s

model with an outside option, this requires an assumption on utility u.

Definition: A PALM (u,%) is regular if for all a, b, c ∈ X, u(c) ≥ u({a, b}) −

u({a, b, c}) and, moreover, u(c) > u({a, b})− u({a, b, c}) if b 6∼ c.

Regularity means that, given two alternatives a and b, the impact of c on the

utility of not choosing, cannot be greater than the utility of c.

The second property is a technical “richness” axiom. Richness requires that X

has infinitely many alternatives, but we do not need this assumption to prove the

sufficiency of the axioms for the representation. We need it to prove the necessity

of the axioms, in particular, the result that %=%∗

Axiom (Richness) For any pair (a, b), there is c ∈ X with c � a or b � c.

Theorem 1 If a nondegenerate stochastic choice function ρ satisfies Weak Order,

Hazard Rate IIA, and Hazard Rate regularity, then there is a regular PALM (u,%)

such that %∗=% and ρ = ρ(u,%).

Conversely, if (u,%) is a regular PALM, and % satisfies Richness, then ρ(u,%)

satisfies Weak Order, Hazard Rate IIA, and Hazard Rate regularity, and %=%∗.

The proof of the theorem is in Section 7. The sufficiency of the axioms for the
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representation is straightforward. The converse of Theorem 1 states, not only that

PALM satisfies the axioms, but that % must coincide with %∗. The perception

priority is therefore identified, given data on stochastic choice. Therefore, u is

unique up to multiplication by a positive scalar. The bulk of the proof is devoted

to establishing that %=%∗.

4.1 Discussion of PALM

Luce’s model is a special case of PALM, in which a ∼ b for all a, b ∈ X. It is useful

to compare how Luce and PALM treat the outside option, the probability of not

making a choice from a set A.

The utility u(A) for A ∈ A has a similar expression to Equation (2), obtained

for Luce’s model. Indeed,

u(A) =
∑
a∈A

u(a)

(
1∑

a∈A q(a,A)
− 1

)
, (5)

with the hazard rates q in place of ρ.

It is interesting to contrast the value of u(A) according to Equation (5) with the

utility one would obtain from Equation (2). Given a PALM model (u,%), we can

calculate û(A) from ρ(u,%) by application of Equation (2). If we do that, we obtain

1. û(A) ≥ u(A),

2. and û(A) = u(A) when a ∼ b for all a, b ∈ A.

The inequality û(A) ≥ u(A) reflects that there are two sources behind choosing

the outside option in PALM. One source is the utility u(A) of not making a choice;

this is the same as in Luce’s model with an outside option. The second source

is due to the sequential nature of choice in PALM. When we consider sequentially

choosing an option following the priority order %, then it is possible that we exhaust

the choices in A without making a choice. When that happens, it would seem to

inflate (or bias) the value of the outside option; as a result we get that û(A) ≥ u(A).
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Despite the tight behavioral characterization in Theorem 1, PALM is very flexible

and can account for some well known behavioral phenomena. We proceed to discuss:

1. similarity and compromise effects (Section 4.2),

2. attraction effect (violations of regularity) (Section 4.3),

3. violations of stochastic transitivity (Section 4.4).

One might suspect that the menu-dependent utility for the outside option is the

reason for the flexibility of PALM. However, we can modify PALM so that it has no

menu-dependent component and still account for all phenomena.

The presence of the outside option allows us to compare two different environ-

ments: an agent has high and low pressure to make choice. The implication of the

model is consistent with the experimental result of Dhar and Simonson (2003) on

the effects of forced choice on choice (Section 5.1). Moreover, we show that if an

agent chooses not to make choice with high probability, then utility and perception

are positively correlated (Section 5.2).

4.2 Consistency with Violation of IIA–Similarity Effect and

Compromise Effect

The similarity and compromise effects are well-known deviations from Luce’s model.

See Rieskamp et al. (2006) for a survey. In this section, we demonstrate how PALM

can capture each of these phenomena.

The similarity and compromise effects are defined in the same kind of experimen-

tal setup. An agent makes choice from the sets {x, y} and {x, y, z}. The “effects”

relate to the consequences of adding the alternative z.

4.2.1 Similarity Effect

Suppose that our three alternatives are such that x and z are somehow very similar to

each other, and clearly distinct from y. This setup is discussed by Tversky (1972a),
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building on an example of Debreu (1960). In Debreu’s example, x and z are two

different recordings of the same Beethoven symphony while y is a suite by Debussy.

This effect is called similarity effect and can be formalized as follows:

ρ(x, {x, y, z})
ρ(y, {x, y, z})

<
ρ(x, {x, y})
ρ(y, {x, y})

. (6)

The standard explanation of the similarity effect says that x and z somehow

jointly compete with y as a “bundle.” The agent does not really view x and z

as two separate options. Our notion of a perception priority can nicely capture

this explanation by assuming that x ∼ z � y. So that x and z are perceived

“simultaneously” and before y.

We shall need the following property of µ.

Definition: A hazard rate function µ satisfies increasing impact at (x, y; z) if

µ(x, {x, y})− µ(x, {x, y, z}) > µ(z, {x, y, z}).

The increasing impact property has a natural implication: the effect on the

hazard rate µ of adding z should not be smaller than the magnitude of z. Let us

assume that x ∼ z � y: the two Beethoven recordings are more salient from the

viewpoint of perception than Debussy.

Proposition 1: If x ∼ z � y and µ satisfies increasing impact at (x, y; z), then

ρ(u,%) exhibits the similarity effect.

Proof of Proposition 1: Since x � y, then ρ(x, {x, y}) = µ(x, {x, y}) and

ρ(y, {x, y}) = µ(y, {x, y})(1− µ(x, {x, y})). Since x ∼ z � y, then ρ(x, {x, y, z}) =

µ(x, {x, y, z}) and ρ(y, {x, y, z}) = µ(y, {x, y, z})(1−µ(x, {x, y, z})−µ(z, {x, y, z})).

Note also that µ(x,{x,y})
µ(y,{x,y}) = u(x)

u(y)
= µ(x,{x,y,z})

µ(y,{x,y,z}) . By increasing impact, µ(x, {x, y}) −

µ(x, {x, y, z}) > µ(z, {x, y, z}); so 1−µ(x, {x, y}) < 1−µ(x, {x, y, z})−µ(z, {x, y, z}).

Hence, ρ(x,{x,y})
ρ(y,{x,y}) = u(x)

u(y)
1

1−µ(x,{x,y}) >
u(x)
u(y)

1
1−µ(x,{x,y,z})−µ(z,{x,y,z}) = ρ(x,{x,y,z})

ρ(y,{x,y,z}) . �
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4.2.2 Compromise Effect

Consider again three alternatives, x, y and z. Suppose that x and z are “extreme”

alternatives, while y represents a moderate middle ground, a compromise. In the

experiment studied by Simonson and Tversky (1992), x is X-370, a very basic model

of Minolta camera; y is MAXXUM 3000i, a more advanced model of the same brand;

and z is MAXXUM 7000i, the top of the line offered by Minolta in this class of

cameras.

Model Price ($) Choices Exp. 1 Choices Exp. 2
x (X-370) 169.99 50% 22%

y (MAXXUM 3000i) 239.99 50 % 57%
z (MAXXUM 7000i) 469.99 N/A 21%

Figure 1: Compromise effect in Simonson and Tversky (1992)

The agent’s choice set is {x, y} in Experiment 1 and {x, y, z} in Experiment

2. The experimental data show that the probability of choosing y increases when

moving from Experiment 1 to 2 (see Figure 1). Simonson and Tversky (1992) call this

phenomenon the compromise effect. As in Rieskamp et al. (2006), the compromise

effect can be written as follows:

ρ(x, {x, y, z})
ρ(y, {x, y, z})

< 1 ≤ ρ(x, {x, y})
ρ(y, {x, y})

. (7)

Proposition 2:When x � y % z, ρ(u,%) exhibits the compromise effect (i.e., (7)) if

and only if u(y) > u(x) and

u(z) + u({x, y, z}) > u2(x)− u2(y) + u(x)u(y)

u(y)− u(x)
≥ u({x, y}). (8)

Proposition 2 results from a straightforward calculation so the proof is omitted.

Note that the condition (8) is consistent with regularity: u(z) + u({x, y, z}) >

u({x, y}).

Simonson and Tversky (1992)’s explanation for the compromise effect is that
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subjects are averse to extremes, which helps the “compromise” option y when facing

the problem {x, y, z}. PALM can capture the compromise effect when we assume

that y is “in between” x and z with respect to priority. One rationale for x � y % z

is familiarity (see the discussion and references on familiarity in the introduction).

The basic camera model may be more familiar, while the top of the line is the least

familiar.

A recent marketing study by Mochon and Frederick (2012) attributes the com-

promise effect to how the options are presented to subjects in experiments. They

critique the explanation in Simonson and Tversky, arguing that the effect is not

driven by the interpretation of some options as being a compromise. Instead, they

find that which options are more salient could lie behind the effect. We note that

their point is consistent with PALM as a description for the compromise effect. Mo-

chon and Frederick’s explanation could correspond to the assumption of x ∼ z � y,

where the extremes are perceived more prominently than the compromise option.

In Appendix A.2, we show that PALM can capture the compromise effect with

x ∼ z � y.

4.3 Consistency with Violation of Regularity–Attraction Ef-

fect

PALM can accommodate violations of regularity. We focus on the attraction ef-

fect, a well-known violation of regularity. PALM can explain the attraction effect

when one uses familiarity to infer perception priority, so the familiar objects are

perceived before unfamiliar ones. The role of familiarity in the compromise and at-

traction effects is documented in Sheng et al. (2005) and Ratneshwar et al. (1987),

respectively.

A famous example of the attraction effect is documented by Simonson and Tver-

sky (1992) using the following experiment. Consider our three alternatives again,

x, y and z. Suppose now that y and z are different variants of the same good: y is

a Panasonic microwave oven (meaning a higher quality and expensive good), while
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z is a more expensive version of y: z is dominated by y. The alternative x is an

Emerson microwave oven (meaning a lower quality and cheap good). A more recent

example, which we discussed in the introduction, is due to Doyle et al. (1999). As

we mentioned in the introduction, the findings in Doyle et al.’s experiments fit the

story in PALM particularly well.

Option Choices Exp. 1 Choices Exp. 2
x (Emerson) 57 % 27 %
y (Panasonic I) 43 % 60 %
z (Panasonic II) N/A 13 %

Figure 2: Attraction effect in Simonson and Tversky (1992)

Simonson and Tversky (1992) (p. 287) asked subjects to choose between x and

y in Experiment 1 and to choose among x, y, and z in Experiment 2 (see Figure

2). They found that in Experiment 2, the share of subjects who chose y becomes

higher than that in Experiment 1. This effect is called the attraction effect. As in

Rieskamp et al. (2006), the effect can be described as follows:

ρ(y, {x, y, z}) > ρ(y, {x, y}). (9)

Proposition 3: If x � y % z and u(x) is large enough, then ρ(u,%) exhibits the

attraction effect (i.e., (9)).

Proof of Proposition 3: We have

ρ(y, {x, y, z}) > ρ(y, {x, y}) ⇔ q(y, {x, y, z})(1− q(x, {x, y, z})) > q(y, {x, y})(1− q(x, {x, y}))

⇔ u(x) >
√

(u(y) + u(z) + u({x, y, z}))(u(y) + u({x, y}))

�

The assumption x � y % z means that the Emerson microwave x is more salient

than the Panasonic microwaves, perhaps because of its price. The first Panasonic
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microwave y is at least as salient as z since there are the same brands.2 In Doyle

et al.’s experiments (as discussed in the introduction), perception is related to the

familiarity of the brand of beans.

It is natural to consider a symmetric experiment. Consider adding a different

alternative, say t, instead of z. The purpose would be to enhance the choice of x.

So t could be a more expensive version of x. Heath and Chatterjee (1995) found

that one is less likely to observe the attraction effect when the third alternative is

dominated by the low-quality alternative (x) compared to the high-quality alter-

native (y). More precisely, one is more likely to have ρ(y, {x, y, z}) > ρ(y, {x, y})

compared to ρ(x, {x, y, t}) > ρ(x, {x, y}). Our model is consistent with this finding:

we cannot have ρ(x, {x, y, t}) > ρ(x, {x, y}) when x � y because of the regularity of

PALM.3

4.4 Stochastic Transitivity

Violations of weak stochastic transitivity are well documented in lab experiments.

For example, see Tversky (1969), Loomes et al. (1991), and Day and Loomes (2010).

In this section, we show that PALM allows for violations of weak stochastic transi-

tivity. We also provide a sufficient condition on PALM that implies weak stochastic

transitivity.

Definition (Weak Stochastic Transitivity): For any a, b, c ∈ X, ρ(a, {a, b}) ≥

ρ(b, {a, b}) and ρ(b, {b, c}) ≥ ρ(c, {b, c}) imply ρ(a, {a, c}) ≥ ρ(c, {a, c}).

To see that PALM allows for violations of weak stochastic transitivity, sup-

pose b � c � a, u(a) = u(c) = x, u(b) =
√
5−1
2

x for some x > 0 and u({a, b}) =

u({a, c}) = u({b, c}) = 0. Then ρ(a, {a, b}) = ρ(b, {a, b}) =
(√

5−1
2

)2
and ρ(b, {b, c}) =

ρ(c, {b, c}) =
(√

5−1
2

)2
, but ρ(a, {a, c}) = 1

4
< 1

2
= ρ(c, {a, c}).

2It is also reasonable when perception is related to the familiarity of the microwaves. The
Emerson microwave x is likely to be the most familiar alternative since it is the cheapest and
simplest model. Also, y is at least as familiar as z because y and z are the same brands, and z is
introduced later.

3However, it is still possible that the relative probability of choosing x increases; that is,
ρ(x,{x,y,t})
ρ(y,{x,y,t}) > ρ(x,{x,y})

ρ(x,{x,y}) , when t is added where x % t � y.
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However, under reasonable conditions, PALM satisfies weak stochastic transitiv-

ity. Formally,

Proposition 4: Let a, b, c ∈ X. Suppose neither a � b � c, c � a � b, nor

b � c � a. If u({a, b}) = u({b, c}) = u({a, c}), then ρ satisfies weak stochastic

transitivity.

Proof of Proposition 4: First, we prove the following claim.

Claim: Take any x, y ∈ X. Let u(xy) = t and f(z) =

√
(z+t)2+4z(z+t)−(z+t)

2
and

g(z) =

√
(z−t)2+4z(z+t)+(z−t)

2
for all z ∈ R.

(i) When x ∼ y, ρ(x, {x, y}) ≥ ρ(y, {x, y}) if and only if u(x) ≥ u(y).

(ii) When x � y, ρ(x, {x, y})≥ρ(y, {x, y}) if and only if u(x)≥f(u(y)) if and only

if g(u(x))≥u(y).

(iii) f and g are increasing functions and f(z) < z < g(z) for any z > 0.

Since x ∼ y, ρ(x, {x, y}) = u(x)
u(x)+u(y)+u(xy)

≥ ρ(y, {x, y}) = u(y)
u(x)+u(y)+u(xy)

if and

only if u(x) ≥ u(y). Hence, (i) holds. When x � y, ρ(x, {x, y}) = u(x)
u(x)+u(y)+t

≥

ρ(y, {x, y}) = u(y)(u(y)+t)
(u(x)+u(y)+t)2

if and only if u2(x) + u(x)(u(y) + t)− u(y)(u(y) + t)≥0

if and only if u(x)≥ f(u(y)) if and only if g(u(x))≥ u(y). Hence, (ii) holds. (iii)

follows from a direct calculation.

Proposition follows from the claim directly. Let u({a, b}) = u({b, c}) = u({a, c}) =

t and f(z) =

√
(z+t)2+4z(z+t)−(z+t)

2
and g(z) =

√
(z−t)2+4z(z+t)+(z−t)

2
for all z ∈ R.

Consider the case c � b � a. Then by the claim, ρ(a, {a, b}) ≥ ρ(b, {a, b})

implies u(a) ≥ g(u(b)) and ρ(b, {b, c}) ≥ ρ(c, {b, c}) implies u(b) ≥ g(u(c)). There-

fore, we obtain u(a) ≥ g(u(b)) ≥ g(g(u(c))) > g(u(c)) which implies ρ(a, {a, c}) >

ρ(c, {a, c}) by the claim. The other cases can be proved in the same way (See Ap-

pendix A.6). �
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5 Forced Choice and Positive Correlation

5.1 Consistency with Dhar and Simonson (2003)–the Effect

of Forced Choice

Dhar and Simonson (2003) run choice experiments in which agents may not have

to make a choice. In their design, “no-choice” and “forced choice” are two exper-

imental treatments. Under the no-choice option, subjects can opt not to make a

choice. Under the forced-choice treatment, subjects must make a choice. The au-

thors show that the introduction of the no choice option strengthens the attraction

effect, weakens the compromise effect, and decrease the relative share of an option

that is “average” on all dimensions. In our model, no choice corresponds to choosing

the default option x0. We proceed to illustrate how PALM can capture the evidence

presented by Dhar and Simonson (2003).

In the following, instead of simply comparing the no choice and forced choice

cases, we will consider the intermediate case in which a decision maker chooses “no

choice option” (i.e., the default option x0) more or less.

Formally, we consider two PALM ρ = ρ(u,%) and ρ∗ = ρ(u∗,%∗) which may only

differ in u(A), for A ∈ A . Thus, u(x) = u∗(x) for any x ∈ X and %=%∗. We

assume that ρ(x0, A) > ρ∗(x0, A) for all A ∈ A . Roughly speaking, in the PALM

ρ∗, a decision maker chooses the default option less often.

Condition ♠: ρ(x0, {x, y}) > ρ∗(x0, {x, y}) if and only if u({x, y}) > u∗({x, y})

and ρ(x0, {x, y, z}) > ρ∗(x0, {x, y, z}) if and only if u({x, y, z}) > u∗({x, y, z}).

Condition ♠ has a natural interpretation. Forcing the decision maker to choose

means making his utility of the outside option smaller. This would be true in

experiments where subjects are not allowed to leave the experiment without making

a choice, in which case their payoff must be at least as much as they would make if

they were to not participate in the experiment.

Proposition 5 : Any PALM model satisfies Condition ♠.

19



We show Proposition 5 in Appendix A.3.

We now turn to the findings of Dhar and Simonson. Fix three alternatives

x, y, z ∈ X. Suppose that x � y � z. So y can be interpreted as an “average”

option. Given our assumption on ρ and ρ∗, and under Condition ♠, we assume that

u({x, y}) > u∗({x, y}) and u({x, y, z}) > u∗({x, y, z}).

In the first place, PALM can capture Dhar and Simonson’s (2003) finding that

the no-choice option decreases the relative share of an average alternative (recall

that ρ represents the case where subjects exercise the outside “no-choice” option

more):

Proposition 6 :

ρ(y, {x, y})
ρ(x, {x, y})

>
ρ∗(y, {x, y})
ρ∗(x, {x, y})

and
ρ(y, {x, y, z})
ρ(x, {x, y, z})

>
ρ∗(y, {x, y, z})
ρ∗(x, {x, y, z})

.

Proof of Proposition 6: By a direct calculation, ρ(x,{x,y})
ρ(y,{x,y}) = u(x)

u(y)

(
1 + u(x)

u(y)+u({x,y})

)
and ρ∗(x,{x,y})

ρ∗(y,{x,y}) = u(x)
u(y)

(
1 + u(x)

u(y)+u∗({x,y})

)
. Since f(t) = u(x)

u(y)

(
1 + u(x)

u(y)+t

)
is decreasing

in t, we obtain u({x, y}) > u∗({x, y}) if and only if ρ(x,{x,y})
ρ(y,{x,y}) <

ρ∗(x,{x,y})
ρ∗(y,{x,y}) . Similarly,

ρ(x,{x,y,z})
ρ(y,{x,y,z}) = u(x)

u(y)

(
1+ u(x)

u(y)+u(z)+u({x,y,z})

)
and ρ∗(x,{x,y,z})

ρ∗(y,{x,y,z}) = u(x)
u(y)

(
1+ u(x)

u(y)+u(z)+u∗({x,y,z})

)
.

Since g(t) = u(x)
u(y)

(
1+ u(x)

u(y)+u(z)+t

)
is decreasing in t, we obtain u({x, y, z}) > u∗({x, y, z})

if and only if ρ(x,{x,y,z})
ρ(y,{x,y,z}) <

ρ∗(x,{x,y,z})
ρ∗(y,{x,y,z}) . �

In second place, PALM can capture Dhar and Simonson’s (2003) finding that

the no-choice option weakens the compromise effect as follows:

Proposition 7: If u({x, y})− u({x, y, z}) ≥ u∗({x, y})− u∗({x, y, z}), then

ρ∗(x, {x, y})
ρ∗(y, {x, y})

/ρ∗(x, {x, y, z})
ρ∗(y, {x, y, z})

>
ρ(x, {x, y})
ρ(y, {x, y})

/ρ(x, {x, y, z})
ρ(y, {x, y, z})

.

The proof is in Appendix A.4.
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5.2 Correlation between Utility u and Perception Priority

%

Perception and utility are two independent parameters in PALM. Therefore, PALM

allows us to model scenarios where perception is positively correlated with utility,

negatively correlated, or simply unrelated.

In experimental settings, Reutskaja et al. (2011) find no intrinsic correlation be-

tween utility and perception (a similar finding is reported in Krajbich and Rangel

(2011)). High-utility items are not per se more likely to be perceived more promi-

nently than others. It is therefore important that PALM not force a particular

relation between perception and utility.

However, we argue that when an agent chooses the outside option with high

probability, it is likely that utility and perception are positively correlated.4 Now

we give some conditions under which u(a) > u(b) if and only if a � b.

Proposition 8: Suppose a 6∼ b and u(a) 6= u(b). If ρ(u,%)(x0, {a, b}) ≥ min{ρ(u,%)(a, {a, b}),

ρ(u,%)(b, {a, b})} and u({a, b}) ≤ 0, then u(a) > u(b) if and only if a � b.

Proof of Proposition 8: First, we show that if u(a) > u(b) then a � b. By way

of contradiction, suppose b � a. By calculation, ρ(a, {a, b}) = u(a)(u(a)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 ,

ρ(b, {a, b}) = q(b, {a, b}) = u(b)
u(a)+u(b)+u({a,b}) , and ρ(x0, {a, b}) = 1 − ρ(b, {a, b}) −

ρ(a, {a, b}) = (u(a)+u({a,b}))(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 .

First consider the case when ρ(a, {a, b}) = min(ρ(a, {a, b}), ρ(b, {a, b})). Then

ρ(x0, {a, b}) ≥ ρ(a, {a, b}) if and only if (u(a)+e({a,b}))(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 ≥ u(a)(u(a)+u({a,b}))

(u(a)+u(b)+u({a,b}))2

if and only if u(b) + u({a, b}) ≥ u(a). Therefore, since u({a, b}) ≤ 0, ρ(x0, {a, b}) ≥

ρ(a, {a, b}) implies u(b) ≥ u(a). Contradiction.

Second consider the case when ρ(b, {a, b}) = min(ρ(a, {a, b}), ρ(b, {a, b})). Then

ρ(x0, {a, b}) ≥ ρ(b, {a, b}) if and only if (u(a)+u({a,b}))(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 ≥ u(b)

u(a)+u(b)+u({a,b}) if

and only if (u(a)+u({a, b}))(u(b)+u({a, b})) ≥ u(b)(u(a)+u(b)+u({a, b})). There-

fore, since u({a, b}) ≤ 0, ρ(x0, {a, b}) ≥ ρ(b, {a, b}) implies (u(a) + u({a, b}))(u(b) +

4Our model implies negative correlation when u0(A) = 0. However, we will not discuss it in
detail because it is not robust to small change in choice probabilities.
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u({a, b})) ≥ (u(b) + u({a, b}))(u(a) + u(b) + u({a, b})), i.e., u(a) + u({a, b}) ≥

u(a) + u(b) + u({a, b}). Contradiction. Therefore, we proved that a � b.

Finally, we show that if a � b then u(a) > u(b). Suppose u(b) > u(a). Then by

the previous part, u(b) > u(a) implies b � a. Contradiction. �

The condition that ρ(x0, {a, b}) ≥ min{ρ(a, {a, b}), ρ(b, {a, b})} means that the

probability of choosing the outside option must be large enough. This property is

necessary to achieve positive correlation, as evidenced in the following result.

Proposition 9: If a � b, u(a) > u(b), and u(b)− u(a) ≤ u({a, b}), then

ρ(u,%)(a, {a, b}) > ρ(u,%)(x0, {a, b}) ≥ ρ(u,%)(b, {a, b}) = min{ρ(u,%)(a, {a, b}), ρ(u,%)(b, {a, b})}.

The proof is in Appendix A.5.

6 Related Literature

Sections 4.2-4 explain how PALM relates to the relevant empirical findings, includ-

ing the similarity, compromise, and attraction effects. We now proceed to discuss

the relation between PALM and some of the most important theoretical models of

stochastic choice.

There is a non-axiomatic literature that proposes several models which can ex-

plain similarity, compromise and attraction. Rieskamp et al. (2006) is an excellent

survey. Examples are Tversky (1972b), Roe et al. (2001) and Usher and McClelland

(2004). The latter two papers propose decision field theory, which allows for vio-

lations of Luce’s regularity axiom. The recent paper by Natenzon (2010) presents

a learning model, in which an agent learns about the utility of the different alter-

natives and makes a choice with imperfect knowledge of these utilities. Learning is

random, hence choice is stochastic. Natenzon’s model can explain all three effects.
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We shall not discuss these papers here, and focus instead on the more narrowly

related axiomatic literature in economics.

1) The benchmark economic model of rational behavior for stochastic choice is

the random utility model. Luce’s model is a special case of both PALM and random

utility. So PALM and random utility are not mutually exclusive; PALM is, however,

not always a random utility model.

The random utility model is described by a probability measure over preferences

over X; ρ(x,A) is the probability of drawing a utility that ranks x above any other

alternative in A. The random utility model is famously difficult to characterize

behaviorally: see the papers by Falmagne (1978), McFadden and Richter (1990),

and Barberá and Pattanaik (1986).

There are instances of PALM which violate the regularity axiom. A random

utility model must always satisfy regularity. Thus PALM is not a special case of

random utility. Moreover, when there is no outside option, Luce’s is a random utility

model and a special case of PALM. So PALM and random utility intersect, but they

are distinct.

2) The recent paper by Gul et al. (2014) presents a model of random choice in

which object attributes play a key role. Object attributes are obtained endogenously

from the observed stochastic choices. Their model has the Luce form, but it applies

sequentially, first for choosing an attribute and then for choosing an object. In terms

of its empirical motivation, the model seeks to address the similarity effect.

Gul, Natenzon and Pesendorfer’s model is a random utility model (in fact they

show that any random utility model can be approximated by their model). There

are therefore instances of PALM that cannot coincide with the model in Gul et al.

(2014). (Importantly, PALM can explain violations of the regularity axiom.) On

the other hand, Luce’s model is a special case of their model and of PALM. So the

two models obviously intersect.

3) Manzini and Mariotti (2014) study a stochastic choice model where attention

is the source of randomness in choice. In their model, preferences are deterministic,
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but choice is random because attention is random. Manzini and Mariotti’s model

takes as parameters a probability measure g on X, and a linear order �M . Their

representation is then

ρ(a,A) = g(a)
∏

a′�Ma

(1− g(a′)).

In PALM, perception is described by the (non-stochastic) perception priority relation

%. Choice is stochastic because it is dictated by utility intensities, similarly to Luce’s

model. In Manzini and Mariotti, in contrast, attention is stochastic, but preference

is deterministic.

Manzini and Mariotti’s representation looks superficially similar to ours, but

the models are in fact different to the point of not being compatible, and seek to

capture totally different phenomena. Manzini and Mariotti’s model implies that IIA

is violated for any pair x and y, so their model is incompatible with Luce’s model.

PALM, in contrast, has Luce as a special case. Appendix A.1 shows that the two

models are disjoint. Any instance of their model must violate the PALM axioms,

and no instance of PALM can be represented using their model. So their model and

ours seek to capture completely different phenomena.

4) A closely related paper is Tserenjigmid (2013). In this paper, an order on

alternative also matters for random choice, and the model can explain the attraction,

similarity and compromise effects. The source of violations of IIA is not perception,

but instead a sort of menu-dependent utility.

5) The paper by Fudenberg et al. (2013) considers a decision maker who chooses

a probability distribution over alternatives so as to maximize expected utility, with

a cost function that ensures that probabilities are non-degenerate. One version of

their model can accommodate the attraction effect, and one can accommodate the

compromise effect.

6) Some related studies use the model of non-stochastic choice to explain some

of the experimental results we describe in Sections 4.2-4. This makes them quite
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different, as the primitives are different. The paper by De Clippel and Eliaz (2012) is

important to mention; it gives an axiomatic foundation for models of non-stochastic

choice that can capture the compromise effect. PALM gives a different explanation

for the compromise effect, in the context of stochastic choice.

Another related paper is Lleras et al. (2010). (See also Masatlioglu et al. (2012)

for a different model of attention and choice.) They attribute violations of IIA to

the role of attention. They elicit revealed preference (not perception priority, but

preference) in a similar way to ours. When the choice from {x, y, z} is x and from

{x, z} is z, then they conclude that x is revealed preferred to z (this is in some sense,

the opposite of the inference we make).

7) Some papers study deliberate stochastic choice due to non-expected utility

or uncertainty aversion. Machina (1985) proposes a model of stochastic choice of

lotteries. In Machina’s paper, an agent deliberately randomizes his choices due to

his non-expected utility preferences. Machina does not provide an axiomatization.

Saito (2014) axiomatizes a model of stochastic choice of act. In Saito’s model, an

agent deliberately randomizes his choices because of non-unique priors over the set

of states. Saito’s primitives is preferences over sets of acts (i.e., payoff-profiles over

the set of states).

7 Proof of Theorem 1

7.1 Necessity

We start by proving the converse statement. Let (u,%) be a regular PALM in which

% satisfies Richness. Let %∗ be derived revealed perception priority from ρ(u,%). We

shall first prove that %∗=%. The next lemma is useful throughout this section.

Lemma 1 If c � a � b, or a � b � c, then
ρ(a, {a, b, c})
ρ(b, {a, b, c})

<
ρ(a, {a, b})
ρ(b, {a, b})

.

Proof: Let a � b.
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Case 1: c � a � b. Since b 6∼ c,

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=

(
µ(a, {a, b, c})(1− µ(c, {a, b, c}))

µ(b, {a, b, c})(1− µ(c, {a, b, c}))(1− µ(a, {a, b, c}))

)
(

µ(a, {a, b})
µ(b, {a, b})(1− µ(a, {a, b}))

)
=

(1− µ(a, {a, b}))
(1− µ(a, {a, b, c}))

[u(a)

u(b)
/
u(a)

u(b)

]
< 1,

where the last strict inequality is by Regularity.

Case 2: a � b � c. Since b 6∼ c,

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})

µ(b, {a, b, c})(1− µ(a, {a, b, c}))

/ µ(a, {a, b})
µ(b, {a, b})(1− µ(a, {a, b}))

=
1− µ(a, {a, b})

1− µ(a, {a, b, c})
< 1,

where the last strict inequality is by Regularity. �

First, we prove a ∼ b if and only if a ∼∗ b. Then, we prove a � b if and only if

a �∗ b.

Lemma 2 a ∼ b if and only if a ∼∗ b.

Proof of Lemma 2:

Step 1: If a ∼ b then a ∼∗ b.

Proof of Step 1: Fix c ∈ X to show ρ(a,{a,b,c})
ρ(b,{a,b,c})/

ρ(a,{a,b})
ρ(b,{a,b}) = 1.

Case 1: a ∼ b % c.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})
µ(b, {a, b, c})

/µ(a, {a, b})
µ(b, {a, b})

=
u(a)

u(b)

/u(a)

u(b)
= 1.

Case 2: c � a ∼ b.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})(1− µ(c, {a, b, c}))
µ(b, {a, b, c})(1− µ(c, {a, b, c}))

/µ(a, {a, b})
µ(b, {a, b})

=
u(a)

u(b)

/u(a)

u(b)
= 1.
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�

Step 2: If a � b, then a �0 b.

Proof of Step 2: By Richness, there is c with c � a � b or a � b � c. In either

case, by Lemma 1, ρ(a,{a,b,c})
ρ(b,{a,b,c}) <

ρ(a,{a,b})
ρ(b,{a,b}) . Hence, a �0 b. �

Step 3: If a %0 b, then a % b.

Proof of Step 3: We show that if a 6% b then a 6%0 b. Let a 6% b. Then by complete-

ness, b � a. By Richness, there is c with c � b � a or b � a � c. Suppose without

loss of generality that c � b � a. By Lemma 1, we have ρ(b,{a,b,c})
ρ(a,{a,b,c}) <

ρ(b,{a,b})
ρ(a,{a,b}) . More-

over, since c � b and c � a, Step 2 shows that c �0 a and c �0 b. Hence, b �0 a, so

that a 6%0 b. �

Step 4: If a ∼∗ b then a ∼ b.

Proof of Step 4: Let a ∼∗ b. By the definition of ∼∗, a %∗ b and b %∗ a. Then

a %∗ b implies that there exist c1, . . . , ck such that a = c1 %0 c2 %0 . . . %0 ck = b.

By Step 3 and the transitivity of %, we have that a % b. Similarly, b %∗ a implies

that b % a. Thus a ∼ b. �

�

In the following, we prove that a � b if and only if a �∗ b.

Lemma 3 If a �∗ b then a � b.

Proof: Let a �∗ b. It suffices to consider the following two cases.

Case 1: a �0 b. Suppose, towards a contradiction, a 6� b. By the completeness

of %, b % a. Note that a �0 b implies a �0 b, so a � b by Lemma 2. Then

b � a. By Richness there is c such that c � b � a or b � a � c. In either case,

ρ(a,{a,b,c})
ρ(b,{a,b,c})/

ρ(a,{a,b})
ρ(b,{a,b}) > 1 by Lemma 1, in contradiction with a �0 b.
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Case 2: There exist c1, . . . , ck ∈ X such that a �0 c1 �0 · · · �0 ck �0 b. Then, by

the proof in Case 1, a � c1 � · · · � ck � b. Hence, by transitivity, a � b. �

The next lemma shows the converse.

Lemma 4 If a � b then a �∗ b.

Proof: To simplify the exposition, we use the following notation in this proof:

a ` b if a � b and there is no c ∈ X with a � c � b.

Let a � b.

Case 1: a ` b. It suffices to show that a �0 b. By Richness, there exists c such that

c � a � b or a � b � c; so there is at least one c such that a 6∼ c and b 6∼ c. By

Lemma 2, a 6∼∗ c and b 6∼∗ c.

Choose any d ∈ X such that a 6∼∗ d and b 6∼∗ d. By Lemma 2, a 6∼ d and b 6∼ d.

Since a ` b, it is not true that a � d � b. That is, either d � a or b � d. Since a � b,

then d � a � b or a � b � d. In either case, by Lemma 1, ρ(a,{a,b,c})
ρ(b,{a,b,c})/

ρ(a,{a,b})
ρ(b,{a,b}) < 1.

Thus a �0 b. Hence, a �∗ b.

Case 2: a 6` b. There exist c1, . . . , ck ∈ X such that a ` c1 ` · · · ` ck ` b. By the

argument in Case 1, a �0 c1 �0 · · · �0 ck �0 b. Therefore, a �∗ b. �

Finally, to complete the proof of the necessity, we prove that ρ satisfies Haz-

ard Rate Regularity if and only if ρ(u,%) satisfies the regularity. Since 1
µ(a,{a,b,c}) −

1
µ(a,{a,b}) = u(a)+u(b)+u(c)+u({a,b})

u(a)
− u(a)+u(b)+u({a,b})

u(a)
, µ(a, {a, b}) ≥ µ(a, {a, b, c}) if and

only u(c) ≥ u({a, b})− u({a, b, c}). Moreover, b � c if and only if b 6∼0 c.

7.2 Sufficiency

In this section, we prove sufficiency. Choose a nondegenerate stochastic choice

function ρ that satisfies the axioms in the theorem. Let %∗ be the derived revealed

perception priority.
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For all A ∈ A and a ∈ A, define

ν(a,A) =
q(a,A)∑
a∈A q(a,A)

.

Since ρ is nondegenerate, 1 > ρ(a,A) > 0 for all a ∈ A. Remember that Aa = {b ∈

A|b �0 a}. Since a 6∈ Aa, 1 − ρ(Aa, A) > 0. Hence, q is well defined. Moreover,

q(a,A) > 0 because ρ is non-degenerate. Thus, ν is also well defined.

Step 1: There exists u : X → R++ such that q(a,A) = u(a)∑
a′∈A u(a

′)

∑
a∈A q(a,A).

Proof of Step 1: First, we show that ν satisfies Luce’s IIA. For all a, b, c ∈ X

ν(a, {a, b})
ν(b, {a, b})

=
q(a, {a, b})
q(b, {a, b})

=
q(a, {a, b, c})
q(b, {a, b, c})

=
ν(a, {a, b, c})
ν(b, {a, b, c})

.

Moreover,
∑

a∈A ν(a,A) = 1. Therefore, by Luce’s theorem (Luce (1959)), there

exists u : X → R++ such that ν(a,A) = u(a)∑
a′∈A u(a

′)
. Hence, by definition, q(a,A) =

ν(a,A)
∑

a∈A q(a,A) = u(a)∑
a′∈A u(a

′)

∑
a∈A q(a,A). �

For all A ∈ A , define

u(A) =
∑
a∈A

u(a)
( 1∑

a∈A q(a,A)
− 1
)
.

Step 2: q(a,A) = u(a)∑
a′∈A u(a

′)+u(A)
.

Proof of Step 2: By a direction calculation,

∑
a′∈A u(a

′)+u(A)

u(a)
=

∑
a′∈A u(a

′)

u(a)
+

∑
a′∈A u(a

′)

u(a)

(
1∑

a′∈A q(a
′,A)
− 1
)

=
∑

a′∈A u(a
′)

u(a)
1∑

a′∈A q(a
′,A)

= 1
q(a,A)

,

where the last equality holds by Step 1. �

Step 3: ρ = ρ(u,%∗).
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Proof of Step 3: Choose any A ∈ A . Since %∗ is a weak order, therefore the

indifference relation ∼∗ is transitive. Then, the set of equivalence classes A/%∗ is

well defined and finite. That is, there exists a partition {α1, α2, . . . αk} of A such

that aj �∗ ai for all ai ∈ αi and aj ∈ αj with j > i and ai ∼∗ ai′ for all ai, ai′ ∈ αi.

Define pi ≡ ρ(αi, A) =
∑

a′∈αi ρ(a′, A). Then for a ∈ αi, q(a,A) = ρ(a,A)
1−

∑
j>i pj

.

Therefore,

∑
a∈αi

q(a,A) =
∑
a∈αi

ρ(a,A)

1−
∑

j>i pj
=

∑
a∈αi ρ(a,A)

1−
∑

j>i pj
=

pi

1−
∑k

j=i+1 pj
.

Hence,

1−
∑
a∈αi

q(a,A) = 1− pi

1−
∑k

j=i+1 pj
=

1−
∑k

j=i+1 pj − pi
1−

∑k
j=i+1 pj

=
1−

∑k
j=i pj

1−
∑k

j=i+1 pj
.

Therefore, for any s ∈ {1, . . . , k},

k∏
i=s+1

(1−
∑
a∈αi

q(a,A)) =
k∏

i=s+1

1−
∑k

j=i pj

1−
∑k

j=i+1 pj
=

1−
∑k

j=s+1 pj

1
= 1− ρ(Aa, A).

For all a ∈ A and A ∈ A , define µ(a,A) = q(a,A) .

Choose a ∈ A. Without loss of generality assume that a ∈ αs. Then, ρ(a,A) =

q(a,A)(1−ρ(Aa, A))=µ(a,A)(1−ρ(Aa, A))=µ(a,A)
∏k

i=s+1(1−
∑

a′∈αi µ(a′, A)) ≡

ρ(u,%∗)(a,A). �

�
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A Appendix: Supplements

A.1 Relation to Manzini and Mariotti

The model of Manzini and Mariotti (2014) is specified by a probability measure g

on X, and a linear order �M . Their representation is then

ρ(a,A) = g(a)
∏

a′�Ma

(1− g(a′)).

Superficially, this representation looks similar to ours, but it is actually very

different: It is incompatible with our model, in the sense that the set of stochastic

choices that satisfy our model is disjoint from the set of stochastic choices in Manzini

and Mariotti’s model. We now proceed to prove this fact.

Let ρ have a Manzini and Mariotti (2014) representation as above and let X

have at least three elements. Suppose, towards a contradiction that it also has a

representation using our model.

We are going to prove that the two models differ in a strong sense, because we

are going to show that there is no subset of X of three elements on which the two

models can coincide.

Let a, b, c ∈ X. The preference relation �M is a linear order. Suppose, without

loss of generality, that a �M b �M c. Given the Manzini-Mariotti representation,

then

ρ(a, {a, b, c}) = ρ(a, {a, b}) = ρ(a, {a, c}) = g(a),

and

ρ(b, {a, b, c}) = ρ(b, {a, b}) = g(b)(1− g(a)).

We have assumed that ρ has a PALM representation given by some (u,%). Now

consider how a, b, c are ordered by %.

There are seven cases to consider; each one of these cases end in a contradiction.

1. a % b, a % c, and b 6∼ c: By Regularity, since b 6∼ c, ρ(a, {a, b, c}) =

31



q(a, {a, b, c}) < ρ(a, {a, b}) = q(a, {a, b}).

2. b % a, b % c and a 6∼ c: By Regularity, since a 6∼ c, ρ(b, {a, b, c}) =

q(b, {a, b, c}) < ρ(b, {a, b}) = q(b, {a, b}).

3. c � a % b: By Regularity, ρ(a, {a, b, c}) = q(a, {a, b, c})(1 − q(c, {a, b, c})) <

q(a, {a, b, c}) ≤ q(a, {a, b}) = ρ(a, {a, b}).

4. a � b ∼ c: By Regularity, since ρ(a, {a, b, c}) = q(a, {a, b, c}) = ρ(a, {a, b}) =

q(a, {a, b}) and q(b, {a, b, c}) < q(b, {a, b}) because a 6∼ c, ρ(b, {a, b, c}) =

q(b, {a, b, c})(1− q(a, {a, b, c})) < ρ(b, {a, b}) = q(b, {a, b})(1− q(a, {a, b})).

5. b � a ∼ c: By Regularity, ρ(a, {a, b, c}) = q(a, {a, b, c})(1 − q(b, {a, b, c})) <

q(a, {a, b, c}) ≤ q(a, ac) = ρ(a, ac).

6. c � b � a: By Regularity, ρ(b, {a, b, c}) = q(b, {a, b, c})(1 − q(c, {a, b, c})) <

q(b, {a, b, c}) ≤ ρ(b, {a, b}) = q(b, {a, b}).

7. a ∼ b ∼ c: In this case, Luce’s IIA is cannot be violated in PALM. However, in

Manzini and Marriott’s Model, there is always at least one violation of Luce’s

IIA.

A.2 Alternative Condition for Compromise Effect

In Proposition 2, we show that PALM can capture the compromise effect under that

condition that x � y % z.

Remember our example of the compromise effect in which x and z are the ex-

tremes and y is the compromised option. One may think that the extremes are

perceived more prominently than the compromised option, and hence, x ∼ z � y.

Proposition A2: When x ∼ z � y, ρ exhibits the compromise effect at {x, z} with

respect to y if and only if

u(y) > u(x) and u({x, y, z})− u(x)u(z)

u(y)− u(x)
>
u2(x)− u2(y) + u(x)u(y)

u(y)− u(x)
> u({x, y}).
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The proof is by straightforward calculations.

A.3 Supplement to Section 5.1

Observation 1: For any PALM ρ,

ρ(x0, {x, y}) > ρ∗(x0, {x, y}) if and only if u({x, y}) > u∗({x, y})

Proof: By a direct calculation, ρ(x0, {x, y})=

(
u(x)+u({x,y})

)(
u(y)+u({x,y})

)(
u(x)+u(y)+u({x,y})

)2 and ρ∗(x0, {x, y})=(
u(x)+u∗({x,y})

)(
u(y)+u∗({x,y})

)(
u(x)+u(y)+u∗({x,y})

)2 . Let g(t) =

(
u(x)+t

)(
u(y)+t

)(
u(x)+u(y)+t

)2 . Since g′(t) =
t
(
u(x)+u(y)

)
+u2(x)+u2(y)(

u(x)+u(y)+t
)3 ,

g is increasing in t when t > −u2(x)+u2(y)
u(x)+u(y)

.

Now it is enough to prove that u({x, y}) is larger than −u2(x)+u2(y)
u(x)+u(y)

. First,

ρ(y, {x, y}) =
u(y)
(
u(y)+u({x,y})

)(
u(x)+u(y)+u({x,y})

)2 > 0 implies that u({x, y}) > −u(y). Second,

ρ(x0, {x, y})=

(
u(x)+u({x,y})

)(
u(y)+u({x,y})

)(
u(x)+u(y)+u({x,y})

)2 ≥ 0 and u({x, y}) >−u(y) imply u({x, y}) ≥

−u(x). Then we obtain u({x, y}) > −u(x)+u(y)
2

≥ −u2(x)+u2(y)
u(x)+u(y)

. �

Observation 2: For any PALM ρ,

ρ(x0, {x, y, z}) > ρ∗(x0, {x, y, z}) if and only if u(x, {x, y, z}) > u∗(x, {x, y, z}).

Proof: By a direct calculation,

ρ(x0, {x, y, z}) =

(
u(x) + u(y) + u({x, y, z})

)(
u(x) + u(z) + u({x, y, z})

)(
u(y) + u(z) + u({x, y, z})

)(
u(x) + u(y) + u(z) + u({x, y, z})

)3
and p∗(x0, {x, y, z}) =

(
u(x)+u(y)+u∗({x,y,z})

)(
u(x)+u(z)+u∗({x,y,z})

)(
u(y)+u(z)+u∗({x,y,z})

)(
u(x)+u(y)+u(z)+u∗(xyz)

)3 .

Let s(t) =

(
u(x)+u(y)+t

)(
u(x)+u(z)+t

)(
u(y)+u(z)+t

)(
u(x)+u(y)+u(z)+t

)3 . Also, let A ≡ u(x)+u(y)+u(z),

B ≡ u2(x)+u2(y)+u2(z)+u(x)u(y)+u(x)u(z)+u(y)u(z), and C ≡ u3(x)+u3(y)+
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u3(z) + u2(x)u(y) + u2(x)u(z) + u2(y)u(x) + u2(y)u(z) + u2(z)u(x) + u2(z)u(y) +

3u(x)u(y)u(z).

Then we obtain s′(t) = t2·A+2t·B+C
(t+A)4

which implies that s is increasing when t >

−B−
√
B2−AC
A

.

Now it is enough to prove that u({x, y, z}) is larger than −B−
√
B2−AC
A

. First,

ρ(y, {x, y, z}) =
u(y)
(
u(y)+u(z)+u({x,y,z})

)(
u(x)+u(y)+u(z)+u({x,y,z})

)2 > 0 implies u({x, y, z}) > −
(
u(y) + u(z)

)
.

Second,

ρ(z, {x, y, z}) =
u(z)
(
u(y)+u(z)+u({x,y,z})

)(
u(x)+u(z)+u({x,y,z})

)(
u(x)+u(y)+u(z)+u({x,y,z})

)3 > 0 and u({x, y, z}) >

−
(
u(y) + u(z)

)
imply u({x, y, z}) > −

(
u(x) + u(z)

)
. Lastly, p(x0, {x, y, z}) =(

u(x)+u(y)+u({x,y,z})
)(
u(x)+u(z)+u({x,y,z})

)(
u(y)+u(z)+u({x,y,z})

)(
u(x)+u(y)+u(z)+u({x,y,z})

)3 ≥ 0 implies that u({x, y, z}) ≥

−
(
u(x) + u(y)

)
. When u(x) = u(y) = u(z) = a, it is obvious that u({x, y, z}) >

−B−
√
B2−AC
A

= −2a. Now it is enough to prove that

−min
(
u(x) + u(z); u(x) + u(z); u(x) + u(z)

)
≥ −B −

√
B2 − AC
A

.

Since the inequality is completely symmetric, WLOG, let assume u(z) ≥ u(y) ≥

u(x). Now we shall prove that B−
√
B2−AC
A

≥ u(x) + u(y).

B−
√
B2 − AC ≥ A

(
u(x)+u(y)

)
if and only if u2(z)−u(x)u(y) ≥

√
B2 − AC if and only if

u4(z)−2u2(z)u(x)u(y)+u2(x)u2(y)≥u2(x)u2(y)+u2(y)u2(z)+u2(x)u2(z)−u(x)u(y)u(z)
(
u(x)+

u(y) + u(z)
)
;

equivalently, u4(z)+u2(x)u(y)u(z)+u2(y)u(x)u(z) ≥ u2(x)u2(z)+u2(y)u2(z)+u2(z)u(x)u(y)

if and only if u(z)
(
u(z)− u(y)

)(
u(z)− u(x)

)(
u(x) + u(y) + u(z)

)
≥ 0.

�

34



A.4 Proof of Proposition 7

Proof of Proposition 7: By direct calculations, we obtain

ρ(x, {x, y})
ρ(y, {x, y})

/ρ(x, {x, y, z})
ρ(y, {x, y, z})

= 1+
u(x)

(
u(z)− u({x, y}) + u({x, y, z})

)(
u(y) + u({x, y})

)(
u(x) + u(y) + u(z) + u({x, y, z})

) and

ρ∗(x, {x, y})
ρ∗(y, {x, y})

/ρ∗(x, {x, y, z})
ρ∗(y, {x, y, z})

= 1+
u(x)

(
u(z)− u∗({x, y}) + u∗({x, y, z})

)(
u(y) + u∗({x, y})

)(
u(x) + u(y) + u(z) + u∗({x, y, z})

) .
By Regularity of ρ and ρ∗, u(z)−u({x, y})+u({x, y, z}) > 0 and u(z)−u∗({x, y})+

u∗({x, y, z}) > 0 respectively. Therefore, ρ∗(x,{x,y})
ρ∗(y,{x,y})/

ρ∗(x,{x,y,z})
ρ∗(y,{x,y,z}) >

ρ(x,{x,y})
ρ(y,{x,y})/

ρ(x,{x,y,z})
p(ρ,{x,y,z})

if and only if

u(z)− u∗({x, y}) + u∗({x, y, z})
u(z)− u({x, y}) + u({x, y, z})

>

(
u(y) + u∗({x, y})

)(
u(x) + u(y) + u(z) + u∗({x, y, z})

)(
u(y) + u({x, y})

)(
u(x) + u(y) + u(z) + u({x, y, z})

) .
Since u({x, y})−u({x, y, z}) ≥ u∗({x, y})−u∗({x, y, z}), we obtain u(z)−u∗({x,y})+u∗({x,y,z})

u(z)−u({x,y})+u({x,y,z}) ≥

1. Since u({x, y}) > u∗({x, y}) and u({x, y, z}) > u∗({x, y, z}), we obtain

1 >

(
u(y) + u∗({x, y})

)(
u(x) + u(y) + u(z) + u∗({x, y, z})

)(
u(y) + u({x, y})

)(
u(x) + u(y) + u(z) + u({x, y, z})

) .
�

A.5 Proof of Proposition 9

Proof of Proposition 9: By calculation, we obtain ρ(a, {a, b}) = q(a, {a, b}) =

u(a)
u(a)+u(b)+u({a,b}) , ρ(b, {a, b}) = q(b, {a, b})(1 − q(a, {a, b})) = u(b)(u(b)+u({a,b}))

(u(a)+u(b)+u({a,b}))2 , and

ρ(x0, {a, b})=1− ρ(a, {a, b})− ρ(b, {a, b}) = (u(a)+u({a,b}))(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 .

First, ρ(a, {a, b}) > ρ(x0, {a, b}) if and only if u(a)
u(a)+u(b)+u({a,b}) >

(u(a)+u({a,b}))(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2

if and only if u(a)(u(a) + u(b) + u({a, b})) > (u(a) + u({a, b}))(u(b) + u({a, b})).

Since u(a) + u(b) + u({a, b}) > u(b) + u({a, b}), we obtain (u(a) + u({a, b}))(u(b) +

u({a, b})) ≥ (u(a) + u({a, b}))(u(a) + u(b) + u({a, b})). Therefore, ρ(a, {a, b}) >
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ρ(x0, {a, b}). Second, ρ(x0, {a, b}) ≥ ρ(b, {a, b}) if and only if (u(a)+u({a,b}))(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 ≥

u(b)(u(b)+u({a,b}))
(u(a)+u(b)+u({a,b}))2 if and only if u(a)+u ≥ u(b). Therefore, ρ(x0, {a, b}) ≥ ρ(b, {a, b}) =

min(ρ(a, {a, b}), ρ(b, {a, b})). �

A.6 Omitted Proof of Proposition 4

1. a ∼ b ∼ c: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ u(b) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies u(b) ≥ u(c). Therefore, we obtain u(a) ≥ u(c) which implies

ρ(a, {a, c}) ≥ ρ(c, {a, c}).

2. a ∼ b � c: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ u(b) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies u(b) ≥ f(u(c)). Therefore, we obtain u(a) ≥ f(u(c)) which

implies ρ(a, {a, c}) ≥ ρ(c, {a, c}).

3. c � a ∼ b: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ u(b) and ρ(b, bc) ≥ ρ(c, bc)

implies u(b) ≥ g(u(c)). Therefore, we obtain u(a) ≥ g(u(c)) which implies

ρ(a, {a, c}) ≥ ρ(c, {a, c}).

4. a � b ∼ c: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ f(u(b)) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies u(b) ≥ u(c). Therefore, we obtain u(a) ≥ f(u(b)) ≥ f(u(c))

which implies ρ(a, {a, c}) ≥ ρ(c, {a, c}).

5. b ∼ c � a: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ g(u(b)) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies u(b) ≥ u(c). Therefore, we obtain u(a) ≥ g(u(b)) ≥ g(u(c))

which implies ρ(a, {a, c}) ≥ ρ(c, {a, c}).

6. a ∼ c � b: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ f(u(b)) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies f(u(b)) ≥ u(c). Therefore, we obtain u(a) ≥ u(c) which

implies ρ(a, {a, c}) ≥ ρ(c, {a, c}).

7. b � a ∼ c: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ g(u(b)) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies g(u(b)) ≥ u(c). Therefore, we obtain u(a) ≥ u(c) which

implies ρ(a, {a, c}) ≥ ρ(c, {a, c}).
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8. a � c � b: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ f(u(b)) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies f(u(b)) ≥ u(c). Therefore, we obtain u(a) ≥ u(c) > f(u(c))

which implies ρ(a, {a, c}) > ρ(c, {a, c}).

9. b � a � c: ρ(a, {a, b}) ≥ ρ(b, {a, b}) implies u(a) ≥ g(u(b)) and ρ(b, {b, c}) ≥

ρ(c, {b, c}) implies g(u(b)) ≥ u(c). Therefore, we obtain u(a) ≥ u(c) > f(u(c))

which implies ρ(a, {a, c}) > ρ(c, {a, c}).
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