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Abstract

We provide a theory of random intertemporal choice. Agents exhibit stochastic choice

over consumption due to preference shocks to discounting attitudes. We first demonstrate

how the distribution of these preference shocks can be uniquely identified from random

choice data. We then provide axiomatic characterizations of some common random dis-

counting models, including exponential and quasi-hyperbolic discounting. In particular,

we show how testing for exponential discounting under stochastic choice involves checking

for both a stochastic version of stationarity and a novel axiom characterizing decreasing

impatience.

1 Introduction

In many economic situations, it is useful to model intertemporal choices, i.e. decisions

involving tradeoffs between earlier or later consumption, as stochastic or random. For

instance, in typical models of random utility used in discrete choice estimation, this ran-

domness is driven by unobserved heterogeneity where the econometrician is not privy to all

∗We want to thank David Ahn, Jose Apesteguia, Miguel Ballester, Yoram Halevy, Yoichiro Higashi, Vijay
Krishna, Tomasz Strzalecki, Charlie Sprenger and participants at D-Day at Duke, LA Theory Bash, UCSD,
Barcelona GSE Stochastic Choice Workshop, D-TEA and the 16th SAET Conference at IMPA for their helpful
comments.
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the various determinants of discounting attitudes.1 Even when considering the behavior

of a single individual, intertemporal choices can still be stochastic.2 Decisions involving

tradeoffs at different points in time are heavily influenced by visceral factors which are

often of an uncertain nature even from the perspective of the decision-maker.3

In addition to being descriptively more accurate, a model of random intertemporal

choice would also be useful for welfare analysis. An agent whose discounting is random

but his utility is deterministic may behave as if his discounting is deterministic but his

utility is random. However, the welfare analysis of an agent whose discounting is random

would naturally be different from that of an agent with deterministic discounting. Given all

these issues, any careful analysis and interpretation of behavioral patterns in intertemporal

choice would require a probabilistic, or random model of discounting.

In this paper, we provide a theoretical framework to study random intertemporal

choice. We model random discounting as a distribution of preference shocks to discounting

attitudes. Importantly, we focus on random discounting as the sole source of stochastic

choice. This allows us to precisely characterize the relationship between random discount-

ing and stochastic choice data.4 In applications such as demand estimation where the

relevant variable of economic interest is probabilistic choice, this is a useful and important

exercise. Moreover, since random discounting is modeled as preference shocks on discount-

ing attitudes, our theory yields robust comparative statics as demonstrated in recent work

by Apesteguia and Ballester (2018).

Our model is flexible enough to allow for random discounting to be interpreted in two

ways. In the first interpretation, we consider stochastic choice as the aggregated choice

frequencies made by agents in a group. Aggregated choices are random due to unobserved

heterogeneity in the population from the perspective of an outside observer such as an

econometrician. This is the case in most applications of discrete choice estimation or in

typical intertemporal choice experiments.

In the second interpretation, we consider stochastic choice as probabilistic choice from

1For further discussions on random utility and discrete choice estimation, see McFadden (2001) and Train
(2009).

2For some recent evidence, see Short Experiments 2 of Agranov and Ortoleva (2017).
3Frederick et al. (2002) provides a detailed discussion on such visceral influences on intertemporal choice.
4In Section 6, we generalize our model to allow for taste shocks as well.
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a single agent due to individual shocks to discounting attitudes. For instance, the agent

is asked to choose from a menu of consumption streams repeatedly over a short interval

of time. Under this interpretation, we can obtain stochastic data from experiments such

as in Tversky (1969), Camerer (1989), Ballinger and Wilcox (1997), and more recently

Regenwetter et al. (2011) and Agranov and Ortoleva (2017).5 In this case, final payoffs

are randomized across the agent’s choices, so the agent considers each choice problem

independently of the others.6 Random choice is then obtained from the frequency of the

agent’s repeated choices.

In both interpretations, we interpret stochastic choice as arising from ex-ante choices

with commitment. By ex-ante, we mean that we observe choices before any consumption

is realized. Indeed, this is the case in the experiments mentioned above. For example,

in Agranov and Ortoleva (2017), each subject is presented with the same choice problem

repeatedly and his choices are elicited before any payment.7

Our main contributions are twofold. First, we show that the distribution of random

discounting can be uniquely identified from random choice. In other words, an outside

observer such as an econometrician can recover the entire distribution of discount attitudes

given sufficient stochastic choice data. Second, we provide axiomatic characterizations of

our model including random exponential and quasi-hyperbolic discounting as special cases.

As a result, we extend the characterizations of classic models of intertemporal choice to

the domain of random choice with novel implications.

In particular, our characterization of random exponential discounting sheds new light

on one of the benchmark properties of rational choice, stationarity. Originally proposed by

Koopmans (1960), the classic stationarity axiom states that choices are not affected when

all consumptions are delayed by the same amount of time and it is a defining property of

exponential discounting. We propose a stochastic version of the stationarity axiom which

5See the introduction of Agranov and Ortoleva (2017) for more experiments on stochastic data.
6Assuming the agent is an expected utility maximizer, this payment procedure means that he considers each

choice problem separately.
7On the other hand, by ex-post, we mean that we observe choices only after all consumptions are realized.

It may be difficult to take this ex-post interpretation literally as consumption steams in our paper have infinite
length. However, with a slight modification of our axioms for finite-period consumption streams, we can interpret
our model as ex-post as well. We consider infinite streams as it is a standard domain in the literature of
intertemporal choice and allows for easy axiomatic comparisons.
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we call Stochastic Stationarity. It states that choice probabilities are not affected when all

consumptions are delayed by the same amount of time.

Under stochastic choice, the relationship between Stochastic Stationarity and expo-

nential discounting is weaker; one can find a random choice model that satisfies Stochastic

Stationarity and all the standard properties but is not exponential discounting.8 In fact,

testing for random exponential discounting involves checking not only for Stochastic Sta-

tionarity but a new axiom which we call Decreasing Impatience. By itself, Decreasing

Impatience exactly characterizes decreasing discount ratios.9 Testing for quasi-hyperbolic

discounting involves checking for a weaker version of Stochastic Stationarity and Decreas-

ing Impatience. All these relationships are novel and unique to random intertemporal

choice.

In general, our main model is a random utility maximization model with discounted

utilities. A discount function D is a decreasing function over time that has value 1 initially

and satisfies the tail condition
∑

s>tD (s)→ 0 as t→∞. Random choice is characterized

by a distribution µ on the set D of discount functions and a fixed taste utility u. More

precisely, the probability that an infinite-period consumption stream f = (f(0), f(1), . . . )

is chosen from a menu F of consumptions streams is the probability that f is ranked higher

than every other consumption streams in F . In other words, if we let ρF (f) denote this

probability, then

ρF (f) = µ

{
D ∈ D

∣∣∣∣∣ ∑
t

D (t)u (f (t)) ≥
∑
t

D (t)u (g (t)) for all g ∈ F
}
.

We call this a random discounting model. One could interpret each realization of a discount

function as corresponding to a particular agent in a population (as in most applied models

of random utility) or to a particular realization of a preference shock to discounting for an

individual.

Theorem 1 shows that under a random discounting model, the distribution of discount-

ing functions can be uniquely identified from random choice. Moreover, this identification

8See Proposition 2 for an explicit example.
9If we let D(t) denote the discount factor at time t, then the discount ratio at t is given by D(t)/D(t+ 1).
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can be achieved using only binary choice data. This extends related uniqueness results of

random utility representations to our setup with infinite-period consumption streams.

Theorem 2 provides an axiomatic characterization of our main model. We introduce

three new axioms: Initial Determinism, Time Monotonicity, and Impatience. Initial De-

terminism requires choice to be deterministic when all consumption streams differ only at

time 0. Time Monotonicity requires consumption streams that dominate at every time

period to be chosen for sure. Impatience requires that when a menu consists of early

and delayed consumption streams, the early streams are chosen for sure. We show that

these three axioms along with the standard axioms for random utility representations fully

characterize the random discounting model.

We then focus on the most popular model of intertemporal choice, exponential dis-

counting. In random exponential discounting, for each discount function D in the support

of µ, there exists a δ ∈ (0, 1) such that

D(t) = δt.

Theorem 3 shows that by adding two new axioms, Stochastic Stationarity and Decreasing

Impatience, we can characterize random exponential discounting.

While Stochastic Stationarity is the random analog of Koopman’s stationarity axiom,

Decreasing Impatience is new and requires that when faced with a consumption stream and

two appropriately delayed streams, either the earliest or the latest stream will be chosen

for sure. Given a model of random discounting, it is equivalent to decreasing discount

ratios, i.e. D(t)/D(t+1) ≥ D(t+1)/D(t+2) for all t almost surely. This characterization

is of interest as similar deterministic versions have been studied by several papers in the

literature, e.g. Halevy (2008), Saito (2011), Chakraborty and Halevy (2017) and Saito

(2017).10 While the classic stationarity axiom along with the standard axioms is sufficient

for exponential discounting under deterministic choice, the role of Decreasing Impatience

in characterizing random exponential discounting is a novel feature unique to random

choice.
10Those papers study a slightly stronger property where D(t)/D(t+ 1) > D(t+ 1)/D(t+ 2) for all t, which

they call Diminishing Impatience.
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Theorem 4 shows that by weakening Stochastic Stationarity, we obtain a model of

random quasi-hyperbolic discounting. In random quasi-hyperbolic discounting, for each D

in the support of µ, there exist β ∈ [0, 1] and δ ∈ (0, 1) such that

D(t) = βδt.

Weak Stochastic Stationarity requires Stochastic Stationarity to hold only when compar-

ing consumption streams that have been delayed by at least one period. Analogous to

the deterministic quasi-hyperbolic discounting model, random quasi-hyperbolic discount-

ing allows for violations of Stochastic Stationarity when comparing immediate to future

consumptions.

Proposition 3 provides comparative statics for our model of random discounting. It

provides a behavioral characterization of when the distribution of discount ratios under

one model of random discounting first-order stochastically dominates that of another. As

in the identification results, such comparisons can be made based on binary choices data

only.

Finally, we consider two extensions of our model. In the first extension, we generalize

our model by also allowing for unobserved shocks to the utility function. We show that

the joint distribution of discounting and utility shocks can be uniquely identified from

stochastic choice data. For instance, if we interpret random choice as reflecting repeated

choices of an individual, then we can detect when two agents exhibit the same randomness

in discounting attitudes but one agent’s utility is more random than that of the other.

This provides a measurement that captures the volatility of utility shocks independent of

discounting attitudes.

In the second extension, we address the issue of dynamic inconsistency. In our main

model, we assume that all choices are collected in a small interval of time. Since tests of dy-

namic inconsistency in the literature typically involve comparing choices from two periods

far apart in time, the static nature of our baseline model does not lend itself to addressing

the issue of dynamic inconsistency. In Section 6.2, we consider a richer primitive consisting

of dynamic random choice data: {ρt}t∈T , where ρt is the random choice collected at time
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period t. Using this richer data, we can then address the issue of dynamic inconsistency.

In particular, we axiomatize a dynamic model of random exponential discounting. This

model is characterized by the addition of one new axiom, Stochastic Dynamic Consis-

tency, which says that the random choices are the same over time (i.e. ρt = ρs for all s

and t). When we study ρt with some given period t, we consider only consumption streams

starting after period t. Hence, we interpret ρt as ex-ante choices at period t.

The rest of the paper is organized as follows. We first discuss the related literature

below. Section 2 then introduces our model and provides the main identification result.

Section 3 discusses the axioms for our random general discounting representation. Section

4 provides the characterization results for the special cases of random exponential and

quasi-hyperbolic discounting. Section 5 discusses comparative statics and finally, Section

6 considers the two extensions.

1.1 Related Literature

There are many recent papers that study the choice-theoretic foundations of random utility.

On the theoretical side, the closest papers to ours are Gul and Pesendorfer (2006) and Lu

(2016). While they do not study intertemporal choice, we provide a generalization of their

results in a larger domain of choice. This extension is necessary in order for us to deal

with stochastic choice over the standard domain for intertemporal preferences, i.e., the

set of infinite-period consumption streams. Furthermore, our axiomatic characterizations

for the random exponential and quasi-hyperbolic discounting models are new and address

issues unique to intertemporal choice.

Using a different primitive, Higashi et al. (2009) also provide a model of random dis-

counting which includes random exponential discounting as a special case. In their model,

choice data consists of a preference relation over menus reflecting an agent’s anticipation

of future uncertainty in discount rates. In contrast, our primitive consists of random

choice. More recently, Higashi et al. (2016) propose a behavioral definition of comparative

impatience using their model.

Pennesi (2015) studies an intertemporal version of the famous Luce model of stochastic

choice. As in Luce’s model, the probability that an agent chooses a consumption stream

7



is its weighed average utility in the menu of consumption streams. In his baseline model,

each utility is evaluated according to exponential discounting but he also provides a gen-

eralization which accounts for quasi-hyperbolic discounting as well.

More recently, Apesteguia and Ballester (2018) analyze the robustness of certain ran-

dom utility models of intertemporal and risky choice. They show the possibility of a

fundamental problem in comparative statics that arises in the standard application of ran-

dom utility models. As mentioned before, since our random discounting model belongs to

the class of what they call random parameter models, we are free of their criticisms.11 In

a more recent paper, Apesteguia et al. (2017) study a case of random parameter models

where the parameters can be ordered according to the single-crossing property.

2 Model

2.1 Primitives and Notation

We consider agents choosing an infinite-period stream of risky payoffs, i.e. lotteries. Let

time be denoted by T := {0, 1, 2, . . . }, that is, the set of all nonnegative integers. Let

X be some finite set of payoffs. We model consumption at each time period as a risky

payoff, that is a lottery in ∆X. Thus, a consumption stream corresponds to a sequence of

lotteries in the space (∆X)T . We let H denote the set of all possible consumption streams

endowed with the product topology.12 For any p ∈ ∆X, we sometimes abuse notation and

also let p denote the constant consumption stream that yields p in every period.

The use of risky payoffs to model consumption allows for a straightforward charac-

terization of our model but in general, any mixture space would work as well. For any

p, q ∈ ∆X and a ∈ [0, 1], we let ap + (1 − a)q denote the lottery (i.e. an element of

∆X) that yields x ∈ X with probability ap(x) + (1 − a)q(x). Each consumption stream

f ∈ H yields a lottery f(t) at every time period t. For any f, g ∈ H and a ∈ [0, 1], we

11For further details, see our comparative statics results in Section 5.
12The product topology corresponds to point-wise convergence in that fk → f if fk (t) → f (t) for all t ∈ T .

The corresponding metric can be defined as d(f, g) :=
∑

t
1
2t
‖f(t)−g(t)‖

1+‖f(t)−g(t)‖ , where ‖ · ‖ is the Euclidian norm in
∆X. On a technical note, we could have alternatively used uniform convergence but this would have resulted
in a continuity axiom that would be too weak. Of course, if T is finite, then both notions of convergence agree.
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let af + (1 − a)g denote the consumption stream (i.e. an element of H) that yields the

lottery af(t) + (1− a)g(t) at every period t ∈ T .13

Agents choose a stream from a menu, that is, a finite set of consumption streams. Let

K be the set of all menus of consumption streams endowed with the Hausdorff metric.

Given any menu F ∈ K, we let extF denote the extreme points of F .

Choice data in our model is a random choice rule (RCR) that specifies a choice dis-

tribution over consumption streams for every menu F ∈ K. Let ∆H be the set of all

measures over consumption streams and endow it with the topology of weak convergence.

Formally, a RCR is a function ρ : K → ∆H such that ρF (F ) = 1. We use the notation

ρF (f) to denote the probability that consumption stream f will be chosen in the menu

F . For binary menus F = {f, g}, we use the condensed notation ρ (f, g) to denote ρF (f).

Following Lu (2016), we model indifferences by relaxing the restriction that all choice

probabilities have to be fully specified. This is analogous to how under classic deterministic

choice, if the agent is indifferent between two streams, then the model is silent about which

stream the agent will choose. This allows the modeler to be agnostic about data that is

orthogonal to the parameters of interest. For example, if two consumption streams are tied,

then the stochastic choice does not specify individual choice probabilities for either stream.

We model this as non-measurability and let ρ denote the corresponding outer measure

without loss of generality.14 With this interpretation, we have ρ (f, g) = ρ (g, f) = 1

whenever two streams f and g are tied. Define K0 ⊂ K as the subset of menus that

contain no indifferences.

As mentioned in the introduction, we interpret the RCR ρ as corresponding to ex-ante

choices that are observable in experiments for example. However, ρF must be defined for

all menus F . We admit that it would be difficult to observe choices for all menus, although

the richness of the domain allows for unique identification (see Theorems 1 and 6) and has

13While in our primitive, consumption lotteries are independent across time, our results would still hold if we
adopted a primitive that allowed for temporal correlations of lotteries and assumed that agents are indifferent
to randomization. We could accommodate preference for randomization by adopting a more general model such
as a random intertemporal version of Saito (2015).

14Formally, stochastic choice naturally includes a σ-algebra H on H. Given any menu F , the corresponding
choice distribution ρF is a measure on the σ-algebra generated by H ∪ {F}. Without loss of generality, we let
ρ denote the outer measure with respect to this σ-algebra. See Lu (2016) for details.
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been assumed in the recent literature on random choice.

2.2 Random Discounting Representations

We now describe our main model. Agents evaluate consumption streams using discounted

utilities. Discounting attitudes are modeled using a discount function D : T → [0, 1] that

is decreasing and satisfies D(0) = 1 and the tail convergence condition
∑

s>tD (s)→ 0 as

t→∞. The tail condition ensures that consumption at time infinity is irrelevant. Let D
be the set of all discount functions. We are now ready to formally define our main model.

Definition. ρ is said to have a Random Discounting Representation if there exists a

probability measure µ on D and a vN-M function u on ∆X such that for all F ∈ K and

f ∈ F

ρF (f) = µ

{
D ∈ D

∣∣∣∣∣ ∑
t∈T

D (t)u (f (t)) ≥
∑
t∈T

D (t)u (g (t)) for all g ∈ F
}
.

A Random Discounting Representation is a random utility model where the utilities are

discounted utilities. Here, choice is stochastic due to preference shocks that hit discount

functions directly. The probability that one stream is chosen over another is exactly the

probability that one stream has a higher discounted utility than another. Note that for

simplicity, our model assumes that the vN-M utility u is deterministic. In other words, the

only source of stochastic choice in this model is random discounting. In Section 6.1, we

consider a generalization where the utility u is random as well, in which case, we obtain a

model that is characterized by a joint distribution over both discount functions and vN-M

utilities.

As in standard applications of random utility, one could interpret the RCR as reflecting

the proportion of agents in a population who choose one stream over another. Here,

random choice is motivated by unobserved heterogeneity on the part of the econometrician.

Note that the model does not impose that each agent in the population must have the

same discount function across all menus. It even allows for random discounting at the

individual level provided that discount functions are drawn from the same distribution
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µ.15

Alternatively, one could use our model to describe the random choice of a single agent

choosing from the same set of consumption streams. For example, this is the case in typical

random choice experiments where the agent is required to make repetitive choices from

the same choice set and one of his choices is randomly selected for payment at the end

of the experiment. Note that this payment procedure does not affect the agent’s choice if

the agent is an expected utility maximizer, which is the case in our model. In this case,

the richness of our model can even accommodate learning by the agent. For example,

suppose D (t) = E [δ (1) · · · δ (t) |δ (1) ] where δ (t) is a discount factor for the consumption

at time t ∈ T . Notice that at the initial period, only a realization of δ(1) is known to the

agent and the discounting for period t consumption is the product δ(1)δ(2) · · · δ(t) of all

the discount factors up to t. Since the agent does not know δ(2), . . . , δ(t), he considers

the conditional expectation of the product given the realization of δ(1). This describes an

agent who updates his belief about future discount factors based on the realization of his

current discount factor.

We call the probability measure µ a discount distribution. Two natural special cases of

the representation are the following.

Definition. A discount distribution µ is

(1) exponential if and only if µ-a.s. for each t ∈ T

D(t) = δt

for some δ ∈ (0, 1).

(2) quasi-hyperbolic if and only if µ-a.s. for each t > 0

D(t) = βδt

for some δ ∈ (0, 1) and β ∈ [0, 1].

15There is some experimental evidence in support of this. In a large field experiment conducted over two
years, Meier and Sprenger (2015) elicited time preferences using incentivized choice experiments. Despite
changes in discounting at the individual level, they found that the aggregate distributions of discount factors
to be unchanged over the two years.
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We say that a discount distribution is regular if the random utilities of two consumption

streams are either always or never equal. In other words, ties either never occur or occur

almost surely.16 Regular discount distributions are dense in the set of all discount distri-

butions. For example, if µ is quasi-hyperbolic where the distribution on (β, δ) ∈ [0, 1]2

is diffuse, then µ is regular.17 They are a relaxation of the standard restriction in tra-

ditional random utility models where utilities are never equal and allows us to allow for

indifferences. Going forward, we only consider regular discount distributions in Random

Discounting Representations.

If ρ has a Random Discounting Representation, we say that it is represented by some

(µ, u) where µ is regular. Our first result below shows that the discount distribution can

be uniquely identified by only looking at binary choices over consumption streams.

Theorem 1. Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then the following

are equivalent.

(1) ρ (f, g) = τ (f, g) for all f, g ∈ H

(2) ρ = τ

(3) (ν, v) = (µ, αu+ β) for some α > 0 and β ∈ R.

Proof. See Appendix A.1.

Here, we provide a brief sketch of the proof for why binary choices are sufficient for

identification. By condition (1) on binary choices, for any finite subset J of T , we can pin

down the distributions of
∑

t∈J D(t)z(t) for any z ∈ RJ . By the Cramer-Wold Theorem,

this implies that the two distributions ν and µmust have the same marginal distribution on

(D(t))t∈J . Since this is true for any finite J ⊂ T , it follows from Kolmogorov’s Extension

theorem that µ = ν.

16Formally, this means that for all z ∈ [0, 1]T , D · z = 0 occurs with µ-measure zero or one.
17On the other hand, if the distribution of (β, δ) has multiple mass points, then it may not be regular.
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3 Characterizing Random Discounting

We now provide an axiomatic characterization of our general discounting model. The first

five axioms are known in the literature for their role in characterizing random expected

utility. We will present them with limited discussion and focus on the new axioms that

are novel for our model of random intertemporal choice.

The first axiom, Monotonicity, is a standard condition necessary for any random utility

model. It states that the probability that a stream is chosen from a menu does not increase

if we enlarge the menu.

Axiom (Monotonicity). For any F,G ∈ K, if G ⊂ F , then ρG (f) ≥ ρF (f).

The next two axioms are direct consequences of the fact that the utilities in our random

utility model are linear in consumption streams. Linearity is the random choice analog of

the standard independence axiom.

Axiom (Linearity). For any F ∈ K, g ∈ H, and a ∈ (0, 1),

ρF (f) = ρaF+(1−a)g (af + (1− a) g) .

The next axiom, Extremeness, is from Gul and Pesendorfer (2006) and states that an

agent can restrict himself to extreme options of a menu without loss of generality. This

follows from the fact that the utilities in our model are linear. For instance, given two

consumption streams and a third that is an interior mixture of the two, an agent will

either choose the first or the second but never the third.

Axiom (Extremeness). For any F ∈ K, ρF (extF ) = 1.

The following Continuity axiom is standard given the topologies we defined previously.

Recall that K0 is the set of menus without indifferences.

Axiom (Continuity). ρ : K0 → ∆H is continuous.

Finally, to avoid degenerate cases, we assume the following nondegeneracy axiom.

This rules out the case where all consumption streams are tied and the agent is indifferent

between all consumption streams.
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Axiom (Nondegeneracy). ρF (f) < 1 for some F and some f ∈ F .

We now introduce three new axioms that are unique to random discounting. In our

model, the utility u over consumption is fixed while discounting can be random. If the

consumption streams are different only at period 0, then the choices over such consumption

streams must be deterministic. This requirement is formalized by the following axiom.

Axiom (Initial Determinism). For any F ∈ K and any f, g ∈ F , if f(t) = g(t) for all

t > 0, then ρF (·) ∈ {0, 1}.

We now introduce some useful notation. Given any two consumption streams f and g

and time period t ∈ T , define the spliced consumption stream ftg such that

ftg (s) =


f (s) if s < t,

g (s− t) if s ≥ t.

Thus, ftg is the consumption stream that is f up to period t − 1 and then restarts with

g from t onwards. In other words,

ftg = (f (0) , f (1) , . . . , f (t− 1) , g (0) , g (1) , . . . ) .

For any menu F ∈ K and any stream g ∈ H we can also define the spliced menu

Ftg := {ftg ∈ H | f ∈ F}

Note that the sequence of menus (Ftg)t∈T converges to the menu F as t → ∞ un-

der the product topology. By the Continuity axiom, ρFtg → ρF . In other words, only

consumptions in finite time matter.

Given Initial Determinism and the fact that the set of final payoffs is finite, we can pin

down preferences using time 0 choice data and find a worst consumption stream w ∈ H
where w is a constant consumption stream and for all f, g ∈ F ,

ρ (f1g, w1g) = 1.
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Lemma 2 in the Appendix shows that given the standard axioms, the worst consumption

stream is well-defined.

For any menu F ∈ K and time period t ∈ T , let F (t) denote the menu of constant

consumption streams that yield f(t) at each period for all f ∈ F . Formally, F (t) = {f(t) ∈
H | f ∈ F}. We can now define our next axiom.

Axiom (Time Monotonicity). For all F ∈ K and f ∈ F , if ρF (t)1w (f (t) 1w) = 1 for all

t ∈ T , then ρF (f) = 1.

Time Monotonicity says that if the consumption at every time period of a stream is

the best in a menu, then that stream must be chosen for sure. For example, suppose F =

{f, g} only consists of two consumption streams. Thus, at every period t ∈ T , F (t)1w =

{(f(t), w, w, . . . ), (g(t), w, w, . . . )}. If (f(t), w, w, . . . ) is chosen over (g(t), w, w, . . . ) for

every t for sure, then f must be chosen over g for sure. It is the natural temporal analog

of standard monotonicity axioms. Note that given the random expected utility axioms

of Gul and Pesendorfer (2006), we can in fact replace the worst outcome w in Time

Monotonicity with any other fixed consumption and our result would still hold.

Finally, we define delayed consumptions. For any f ∈ H and t ∈ T , let f t := wtf .

Hence, f t is a consumption stream that consists of f delayed by t and with w at the

beginning. In other words,

f t = (w, . . . , w︸ ︷︷ ︸
t

, f(0), f(1), f(2), . . . ).

For example, f0 = f and f1 = (w, f(0), f(1), . . . ). Impatience below states that earlier

streams are always chosen over delayed ones.

Axiom (Impatience). For any f ∈ H and t ∈ T , ρ
(
f, f t

)
= 1.

We are now ready to state our general representation theorem.

Theorem 2. ρ has a Random Discounting Representation if and only if it satisfies Mono-

tonicity, Linearity, Extremeness, Continuity, Nondegeneracy, Initial Determinism, Time

Monotonicity and Impatience.
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Proof. See Appendix A.2.

The proof of Theorem 2 consists of two main steps. First, we use the standard argu-

ments to obtain a representation for menus that consist of streams that yield non-worst

consumptions only in a finite number of time periods. The second step consists of using

Kolmogorov’s Extension theorem along with our Continuity to obtain the representation

for all menus.

4 Random Exponential and Quasi-Hyperbolic

Discounting

In this section, we focus on two of the most popular models of discounting, exponential

and quasi-hyperbolic. First, we introduce the stochastic version of the classic stationarity

axiom. For any F ∈ K and t ∈ T , let F t =:
{
f t | f ∈ F

}
denote the delayed menu where

all streams are delayed by t time periods.

Axiom (Stochastic Stationarity). For any f ∈ H and t ∈ T ,

ρF (f) = ρF t

(
f t
)
.

This is the stochastic version of the deterministic stationarity axiom as proposed by

Koopmans (1960). It is weaker than deterministic stationary in the sense that if choices

are deterministic and satisfy Koopmans’ stationary, then they must satisfy Stochastic Sta-

tionarity. The converse, however, is not true. In fact, there is some empirical evidence that

shows how Stochastic Stationarity can be satisfied in aggregated data despite Koopmans’

stationarity being frequently violated at the individual level. In a large field experiment

conducted over two years, Meier and Sprenger (2015) elicited time preferences using in-

centivized choice experiments. They found that the aggregate distributions of discount

factors and the proportion of present-biased individuals are found to be unchanged over

the two years, implying that Stochastic Stationarity is satisfied in their data set.

In order to characterize random exponential discounting, Stochastic Stationarity is
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insufficient (see example below). First, define a forward consumption f−1 by
(
f−1

)1
= f .

Note that f−1 is well defined if and only if f(0) = w.

Axiom (Decreasing Impatience). For all f, g, h ∈ H, if f = ag−1 + (1− a)w and g =

ah−1 + (1− a)w, then

ρ{f,g,h} ({f, h}) = 1.

To understand Decreasing Impatience, note that there are two aspects to intertemporal

choices: the level of consumption and the timing of consumption. The condition g =

ah−1 + (1− a)w (or f = ag−1 + (1− a)w) imply that there is a trade-off between these

two aspects when an agent is choosing between g and h (or f and g). By choosing g over

h (or f over g), the agent consumes earlier but at a lower level of consumption due to

the mixing with the worst outcome. Thus, f is the earliest, lowest consumption, h is the

latest, highest consumption while g is something in between. If an agent is just impatient

enough so that he weakly prefers f to g, then a lower level of impatience one time period

later would imply that he weakly prefers h to g. In a menu consists of all three streams,

Decreasing Impatience says that he will never choose g (baring ties).18

The following result shows that Decreasing Impatience characterizes decreasing dis-

count ratios over time.

Proposition 1. Let ρ be represented by (µ, u). Then ρ satisfies Decreasing Impatience if

and only if for all t ∈ T , µ-a.s. D (t+ 2) = 0 or

D (t)

D (t+ 1)
≥ D (t+ 1)

D (t+ 2)
.

Proof. See Appendix A.3.

Stochastic Stationarity along with Decreasing Impatience are necessary and sufficient

for a random exponential discounting model.

Theorem 3. Let ρ be represented by (µ, u). Then µ is exponential if and only if ρ satisfies

Stochastic Stationarity and Decreasing Impatience.

18Technically, Decreasing Impatience is the intertemporal analog of the extremeness axiom from Gul and
Pesendorfer (2006). See Appendix B for a precise statement of this relationship.
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Proof. See Appendix A.4.

In the case when ρ is deterministic, we can obtain a model of exponential discounting

from the classical stationarity axiom alone. Thus, the fact that Decreasing Impatience is

needed for random exponential discounting is a feature unique to random intertemporal

choice.19 To illustrate this, we provide an example of random discounting that satisfies

Stochastic Stationarity but is not exponential.20 This clarifies the importance of Decreas-

ing Impatience in random intertemporal choice. For each ω ∈ [0, 1] define

Dω(t) =

 e−2n if t = 2n,

e−2n−
1
2
−ω if t = 2n+ 1.

In other words, Dω =
(

1, e−
1
2
−ω, e−2, e−

5
2
−ω, e−4, e−

9
2
−ω, . . .

)
. Let µ be a random dis-

counting representation which is uniform over {Dω | ω ∈ [0, 1]}.

43210
t

0

logDω(t)

−2

−4

logD1

logD0

Figure 4.1: Non Exponential µ which satisfies Stochastic Stationarity
19One may wonder what restrictions on discount functions Stochastic Stationarity by itself implies. For every

discount function D and set of time periods J ⊂ T , let (D̃t)t∈J denote the normalized discount rates at each
t ∈ J . Then Stochastic Stationarity is equivalent to (D̃t)t∈J having the same distributions as (D̃t+s)t∈J for all
s ∈ T and J ⊂ T .

20For an example of random discounting that satisfies Decreasing Impatience but is not exponential, suppose
D(t) = δt

2

for some δ. This shows that Stochastic Stationarity and Decreasing Impatience are independent
axioms.
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Proposition 2. (i) µ is not exponential but satisfies Stochastic Stationarity; (ii) µ vi-

olates Decreasing Impatience, and its random choice cannot have a random exponential

representation.

Proof. See Appendix A.5.

The formal proof is in the Appendix. Given Proposition 1, Figure 4.1 clearly shows that

µ violates Decreasing Impatience. We now provide a sketch of why µ satisfies Stochastic

Stationarity. If t is even, then (Dω(t), Dω(t + 1), . . . ) = e−t(Dω(0), Dω(1), . . . ). Then,

for any f, g ∈ H, Dω ·
(
u ◦ f t

)
≥ Dω ·

(
u ◦ gt

)
⇔ Dω · (u ◦ f) ≥ Dω · (u ◦ g). Note that

this equivalence is captured in Figure 4.1 by the fact that the slope of logDω is the same

between periods from 0 to 1 and periods from 3 to 4. Therefore, when t is even, each

realization Dω predicts no violation of the deterministic stationarity axiom.

If t is odd, then (Dω(t), Dω(t + 1), . . . ) = e−t(D1−ω(0), D1−ω(1), . . . ). Then, for any

f, g ∈ H, Dω ·
(
u ◦ f t

)
≥ Dω ·

(
u ◦ gt

)
⇔ D1−ω · (u ◦ f) ≥ D1−ω · (u ◦ g). Note that

this equivalence is captured in Figure 4.1 by the fact that the slope of logD1 between

periods from 0 to 1 is the same as the slope of logD0 between periods from 1 to 2.

Therefore when t is odd, Dω predicts a violation of the deterministic stationarity axiom

if and only if D1−ω predicts the opposite direction of the violation. The two reversals

cancel each other out and "on average", deterministic stationarity is satisfied implying

that Stochastic Stationarity is satisfied. Hence (i) holds. To see why (ii) holds suppose

by way of contradiction that µ induces a random choice that has a random exponential

representation. Since the discounting function at periods 2 and 4 are deterministic, choice

must be deterministic at those periods and also at other periods such as 1 and 3, yielding

a contradiction.

For the random quasi-hyperbolic discounting model, we need to weaken Stochastic

Stationarity. In particular, suppose that Stochastic Stationarity holds only when menus

are delayed by at least one period.

Axiom (Weak Stochastic Stationarity). For any F ∈ K and t ≥ 1,

ρF 1

(
f1
)

= ρF t

(
f t
)
.
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The deterministic version of this axiom has appeared in Hayashi (2003) and Olea and

Strzalecki (2014). In our model, Weak Stochastic Stationarity along with Decreasing Im-

patience exactly characterize random quasi-hyperbolic discounting. As mentioned above,

Decreasing Impatience is unnecessary if choices are deterministic.

Theorem 4. Let ρ be represented by (µ, u). Then µ is quasi-hyperbolic if and only if ρ

satisfies Weak Stochastic Stationarity and Decreasing Impatience.

Proof. See Appendix A.4.

5 Comparative Statics

We now present some comparative statics for our random discounting model. First, for

any RCR ρ with a Random Discounting representation, let bρ and wρ denote its best

and worst consumptions respectively. For any a ∈ [0, 1], we can define the lottery paρ :=

abρ+ (1− a)wρ. Note that paρ is a normalized utility that allows us to compare valuations

across random choices with different tastes.

Consider two consumption streams f and g such that f provides a lower payoff than

g in time period t1 but a higher payoff than g in a later period t2 > t1. In any other time

period, f and g are the same. Thus, f and g differ at two time periods and f is more

back-loaded than to g. We say one RCR is stochastically more patient than another if the

probability that the first chooses consumption stream f over g is always greater than the

second.

Definition. ρ is stochastically more patient than τ if for any f, g, f ′, g′ ∈ H, a1 < b1,

a2 > b2 and t1 < t2 such that f (ti) = paiρ , g (ti) = pbiρ , f ′ (ti) = paiτ , g′ (ti) = pbiτ for

i ∈ {1, 2} and f (s) = g (s), f ′ (s) = g′ (s) for all s 6∈ {t1, t2}, then

ρ (f, g) ≥ τ
(
f ′, g′

)
.

Given two discount distributions µ and ν, let µ � ν denote the fact that for all

t1, t2 ∈ T such that t1 < t2 the distribution of D (t2) /D (t1) under µ first-order stochas-

tically dominates (FOSD) its distribution under ν. This exactly captures the ordering
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of distributions of discount factors according to the level of patience. We now have the

following result.

Proposition 3. Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then µ� ν

if and only if ρ is stochastically more patient than τ .

Proof. Without loss of generality, we can normalize u and v such that u (bρ) = v (bτ ) = 1

and u (wρ) = v (wτ ) = 0. Define f, g, f ′, g′ ∈ H, a1 < b1, a2 > b2 and t1 < t2 as in the

definition of more stochastic patience. Thus,

ρ (f, g) ≥ τ
(
f ′, g′

)
⇔ µ {D ∈ D | D (t1) a1 +D (t2) a2 ≥ D (t1) b1 +D (t2) b2 }

≥ ν {D ∈ D | D (t1) a1 +D (t2) a2 ≥ D (t1) b1 +D (t2) b2 }

⇔ µ {D ∈ D | D (t1) (b1 − a1) ≤ D (t2) (a2 − b2)}

≥ ν {D ∈ D | D (t1) (b1 − a1) ≤ D (t2) (a2 − b2)} ,

Since a1 < b1 and a2 > b2 , the result follows.

Note that this immediately implies the following result that allows us to perform FOSD

comparisons of exponential discount distributions using random choice.

Corollary 1. Let ρ and τ be represented by (µ, u) and (ν, v) respectively where both µ and

ν are exponential. Then µ FOSD ν if and only if ρ is stochastically more patient than τ .

Proof. Follows immediately from Proposition 3 above.

One may wonder if it would be possible to generalize our definition of greater stochas-

tic patience. Under deterministic choice, our notion of greater patience is equivalent to

exhibiting a greater preference for f over g whenever f single-crosses g from below, that is,

there exists some t∗ such that f gives a lower (higher) payoff than g when t ≤ t∗ (t ≥ t∗).21

In stochastic choice however, this equivalence fails. In other words, it is no longer true

that µ � ν if and only if ρ (f, g) ≥ τ (f, g) for consumption steams f and g where f

single-crosses g from below. The following example illustrates.
21See Benoit and Ok (2007).
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Example 1. Let D1 =
(
1, 12 ,

1
2 , 0, . . .

)
, D2 = (1, 1, 0, 0, . . . ), D′1 =

(
1, 12 , 0, 0, . . .

)
and

D′2 =
(
1, 1, 12 , 0, . . .

)
Suppose µ = 1

2δD1 + 1
2δD2 and ν = 1

2δD′1 + 1
2δD′2 . Let ρ and τ be

represented by (µ, u) and (ν, v) respectively. It is easy to check that µ � ν. Consider

f, g ∈ H such that

u ◦ f = (0, 1, 1, 0, . . . )

u ◦ g =

(
5

4
, 0, 0, 0, . . .

)

and note that f single-crosses g from below. However, note that

ρ (f, g) = 0 <
1

2
= τ (f, g) .

6 Extension

6.1 Random vN-M Utility

In this section, we consider a general model where there is randomness in both discounting

and utilities. Idiosyncratic shocks to the economy may change the agent’s perception of

future consumption (i.e. discounting function) as well as his taste (i.e. vNM utility). One

important question is to ask whether it is possible to distinguish the randomness of the

discounting function from the randomness of the vNM utility. To address the question, we

first provide an axiomatic characterization of the general model and then show that this

distinction is possible.

We introduce new primitives as follows. Let U denote the set of vNM utilities on ∆X.

Although utilities are random, we still need to assume that there exists some universally

worst consumption. For instance, there may be shocks to risk aversion but the agent still

prefers more money to less. Fix some outcome w ∈ X and let U∗ ⊂ U denote the set

of non-constant utilities such that u (x) ≥ u (w) for all x ∈ X. The existence of a worst

consumption w also allows us to define delayed streams.

Definition. ρ is said to have a General Random Discounting Representation if there exists
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a regular measure π on D × U∗ such that22

ρF (f) = π

{
(D,u) ∈ D × U∗

∣∣∣∣∣ ∑
t

D (t) [u (f (t))− u (g (t))] ≥ 0 for all g ∈ F
}
.

In this case, we say ρ is represented by π. Since tastes are random in a General Random

Discounting representation, Initial Determinism clearly cannot be satisfied. Nevertheless,

the following condition ensures that w is a worst consumption.

Axiom (Worst). ρ (f1w,w) = 1 for all f ∈ H.

With this condition, we can define delayed streams as before and Impatience is well-

defined. The next axiom ensures that utilities are time-invariant. It states that constant

consumption streams are always chosen over streams with time-varying payoffs.23

Axiom (Time Invariance). For t ∈ T , suppose that f (s) ∈ {p, q} ⊂ ∆X for all f ∈ F
and all s ≤ t. If p, q ∈ F ,24 then

ρFtw ({ptw, qtw}) = 1

Finally, we assume a nondegeneracy condition for initial consumptions. Analogous to

Nondegeneracy, this rules out the case where the agent is indifferent between all initial

consumptions at time 0.

Axiom (Initial Nondegeneracy). ρF1w (f1w) < 1 for some F and some f ∈ F .

The following is the representation result for a General Random Discounting Repre-

sentation.

Theorem 5. ρ has a General Random Discounting Representation if and only if it satisfies

Monotonicity, Linearity, Extremeness, Continuity, Initial Nondegeneracy, Worst, Time

Invariance, and Impatience.
22As before, regularity means that the random utilities of two consumption streams are either always or never

equal.
23Time Invariance is the random choice analog of the classic state-by-state independence condition in subjec-

tive expected utility.
24Here, we use the convention where p and q refer to the constant consumption streams corresponding to

their respective lotteries.
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Proof. See Appendix A.6.

Finally, the following uniqueness result generalizes Theorem 1 to General Random

Discounting. To see this, note that we can identify the utility shocks from streams that

only have consumption at some fixed time period. We can then identify the discount

shocks as any randomness above and beyond that generated by the utility shocks.

Theorem 6. Let ρ and τ be represented by π and η respectively. Then π = η if and only

if ρ (f, g) = τ (f, g) for all f, g ∈ H.

Proof. See Appendix A.7.

This shows that the joint distribution of discounting and utilities can be recovered from

random choice. Moreover, as before, binary choice data will suffice for this identification

exercise. For instance, if we interpret the random choice as reflecting repeated choices

of an individual, then we can detect when two agents exhibit the same randomness in

discounting attitudes but one agent’s utility is more random than that of the other. We

can also be used to provide some measurement that captures the degree to which utilities

vary across decision times.

6.2 Dynamic Random Choice

In the previous sections, we assumed that the agent’s choices are static and made only at

period 0. In this section, we study the agent’s dynamic choice. We extend our primitive

as follows. For each t ∈ T , let Ht denote the set of all consumption streams endowed with

the product topology which yield the outcome w for each period s ∈ T such that s ≤ t−1.

We denote by Kt the set of all menus of consumption streams endowed with the Hausdorff

metric which yield the outcome w for each period s ∈ T such that s ≤ t− 1.

Definition. For each t ∈ T , ρt is a function from Kt → ∆(Ht) such that ρtF (F ) = 1. We

call ρt the random choice rule (RCR) at period t ∈ T .

The observable data set now consists of {ρt}t∈T . The RCR ρ in the previous sections

can be understood as ρ0. As before, we interpret the random choice ρt as ex-ante choice ob-

served at period t. Also as before, this can be interpreted as either an individual’s random
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choice or aggregated random choice across population of agents. The latter interpretation

applies in experimental settings where random choice corresponds to aggregated choices.

For example, in Halevy (2015), subjects are asked to choose between a sooner but smaller

consumption and a later but larger consumption at two different time periods (i.e., week

0, week 4). The aggregated choices are random because of the unobserved heterogeneity

of subjects from the perspective of the outside observer. By aggregating choices across the

subjects at the two time periods, we can elicit ρweek0 and ρweek4. Note that in all these

settings, we interpret the worst outcome as "no consumption".

For each t ∈ T , we can impose the same axioms on ρt as in the previous sections just

by changing K to Kt. One new axiom is a natural extension of the dynamic consistency

axiom to the stochastic setting.

Axiom. (Stochastic Dynamic Consistency) For any t, s ∈ T such that t < s, for any

F ∈ Ks and any f ∈ F ,
ρtF (f) = ρsF (f).

Since F ∈ Ks, the agent’s payoff is constant, namely zero, between period t and s− 1.

As a result, if the agent is dynamically consistent, then he should not change his choice

at period s after making his choice at period t. Hence, we require that ρtF (f) = ρsF (f).

Proposition 4. {ρt}t∈T satisfies Stochastic Dynamic Consistency and for each t ∈ T , ρt

satisfies the axioms in Theorems 2 and 3 (defined with Kt instead of K) if and only if there

exists a probability measure µ on [0, 1] and a vN-M function u on ∆X such that for all

t ∈ T , F ∈ Kt, and f ∈ F

ρtF (f) = µ

δ ∈ [0, 1]

∣∣∣∣∣∣
∑

s∈T :s≥t
δs−tu (f (s)) ≥

∑
s∈T :s≥t

δs−tu (g (s)) for all g ∈ F

 .

(6.1)

Proof. See Appendix A.8.

Here, we show that {ρt}t∈T satisfies Stochastic Dynamic Consistency. Fix any t, s′ ∈ T
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such that t < s′. Choose any F ∈ Ks′ and any f ∈ F ,

ρtF (f) = µ
{
δ ∈ [0, 1]

∣∣∣ ∑s∈T :s≥t δ
s−tu (f (s)) ≥∑s∈T :s≥t δ

s−tu (g (s)) for all g ∈ F
}

= µ{δ ∈ [0, 1] | ∑s∈T :s≥s′ δ
s−tu (f (s)) ≥∑s∈T :s≥s′ δ

s−tu (g (s)) for all g ∈ F}
(∵ u(h(s)) = 0 for all h ∈ F and s ∈ T such that t ≤ s ≤ s′ − 1)

= µ
{
δ ∈ [0, 1]

∣∣∣ δs′−t∑s∈T :s≥s′ δ
s−s′u (f (s)) ≥ δs′−t∑s∈T :s≥s′ δ

s−s′u (g (s)) for all g ∈ F
}

= µ
{
δ ∈ [0, 1]

∣∣∣ ∑s∈T :s≥s′ δ
s−s′u (f (s)) ≥∑s∈T :s≥s′ δ

s−s′u (g (s)) for all g ∈ F
}

= ρs
′
F (f) .

(6.2)

To understand why Stochastic Dynamic Consistency is sufficient, note that by Theorem

1, it implies that the marginal distributions of the discount functions after a common time

period are the same. Random exponential discounting then ensures that the distribution

of δ must be the same.

Note that the same extension is impossible for the Random Discounting model defined

in Section 2.2 where the utility is fixed and the discounting function is random and may

not necessarily be exponential. This is because Stochastic Dynamic Consistency may be

violated. To see this, note that the third equation of (6.2) may not hold with a general

discounting function.
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A Appendix: Proofs

Recall that T = {0, 1, . . . ,∞}. For every D ∈ [0, 1]T , f ∈ H, and vN-M utility function u

on ∆X, we use the condensed notation

D · (u ◦ f) :=

∞∑
t=0

D (t)u (f (t))

whenever the limit is well-defined, which may be infinite. Note that this converges for

all D ∈ D since
∑

s>tD (s) → 0 as t → ∞ and u is bounded since X is finite. Given

consumption streams f, g ∈ H and t ∈ T , recall the spliced consumption stream

ftg (s) =


f (s) if s < t,

g (s− t) if s ≥ t.

For any F ∈ K, Ftg = {ftg ∈ H | f ∈ F} denotes the spliced menu. Finally, recall that

we use ρ (f, g) to denote ρ{f,g} (f) for any f, g ∈ H.

A.1 Proof of Theorem 1

Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Note that if part (3) is true,

then ρF (f) = τF (f) for all f ∈ H from the representation. Moreover, since ρ (f, g) =

ρ (g, f) = 1 iff τ (f, g) = τ (g, f) = 1 iff f and g are tied, both RCRs have the same ties

so ρ = τ and part (2) is true. Since part (2) implies part (1) trivially, we have that (3)

implies (2) and (2) implies (1).

Hence, all that remains is to prove that part (1) implies part (3). Suppose (1) is

true so ρ (f, g) = τ (f, g) for all f, g ∈ H. First, note that for any p, q, r ∈ ∆X,

u (p) ≥ u (q) ⇔ µ {D ∈ D | u (p) ≥ u (q)} = 1 ⇔ ρ (p1r, q1r) = 1 ⇔ τ (p1r, q1r) =

1 ⇔ τ {D ∈ D | v (p) ≥ v (q)} = 1 ⇔ v (p) ≥ v (q), so u = αv + β for some α > 0 and a

real number β. Without loss of generality, we can let u = v and w ∈ ∆X be the worst

stream for both ρ and τ . Fix some finite J ⊂ T and let f ∈ H be such that f (t) = w for
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all t 6∈ J . Let p ∈ ∆X such that u (p) = v (p) = a ∈ [0, 1] and note that

µ

{
D ∈ D

∣∣∣∣∣ ∑
t∈J

D (t)u (f (t)) ≥ a
}

= ρ (f, p1w)

= τ (f, p1w)

= ν

{
D ∈ D

∣∣∣∣∣ ∑
t∈J

D (t) v (f (t)) ≥ a
}
.

Since this is true for all a ∈ [0, 1] and such f , it must be that the distribution of∑
t∈J D (t) z (t) for all z ∈ [0, 1]J must be the same under µ and ν. Note we can eas-

ily extend this for all z ∈ RJ+ by scaling so by the Cramer-Wold Theorem,25 (D (t))t∈J has

the same distribution under µ and ν.26 Since this is true for all J ⊂ T , by Kolmogorov’s

Extension Theorem, µ = ν. This proves (3).

A.2 Proof of Theorem 2

A.2.1 Worst Consumption Stream is Well-Defined

We first prove that the worst consumption stream w is well-defined. First, we prove a

technical lemma showing that under linearity, we can show the following.

Lemma 1. If ρ satisfies Linearity, then ρ (p1f, q1f) = ρ (p1g, q1g) for all p, q ∈ ∆X and

f, g ∈ H.

Proof. Let r := 1
2p+ 1

2q and note that

1

2
(p1f) +

1

2
(q1g) = r1

(
1

2
f +

1

2
g

)
=

1

2
(p1g) +

1

2
(q1f) ,

1

2
(q1f) +

1

2
(q1g) = q1

(
1

2
f +

1

2
g

)
=

1

2
(q1g) +

1

2
(q1f) .

25See Billingsley (1986).
26For each z ∈ RJ

+ we can find k ∈ Z++ such that z/k ∈ [0, 1]J because J is finite. Define µ(D ∈ DJ |D · z ≥
a) = µ(D ∈ DJ |D · (z/k) ≥ a/k). Note that the definition does not depend on k.
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By Linearity, this implies that

ρ (p1f, q1f) = ρ

(
1

2
(p1f) +

1

2
(q1g) ,

1

2
(q1f) +

1

2
(q1g)

)
= ρ

(
1

2
(p1g) +

1

2
(q1f) ,

1

2
(q1g) +

1

2
(q1f)

)
= ρ (p1g, q1g)

as desired.

We can now show that the worst consumption stream w ∈ H is well-defined.

Lemma 2. Suppose ρ satisfies Monotonicity, Linearity, Extremeness, Continuity and Ini-

tial Determinism. Then there exists a constant consumption stream w ∈ H such that

ρ (f1g, w1g) = 1 for all f, g ∈ H.

Proof. Fix some consumption lottery r ∈ ∆X. Consider the random choice rule τ on ∆X

such that for any finite set of lotteries C ⊂ ∆X and p ∈ C,

τC (p) = ρC1r (p1r) .

Note that by Initial Determinism, τ is deterministic. Hence, from Lu (2016), τ can be

represented by a deterministic expected utility u on ∆X. Let w ∈ ∆X be some worst

lottery according to u. Note that w exists as X is finite. Let w ∈ H denote the constant

consumption stream that yields w every period. From Lemma 1, this implies that for any

f, g ∈ H, ρ (f1g, w1g) = ρ (f1r, w1r) = τ (f (0) , w) = 1, as desired.

A.2.2 Sufficiency of Theorem 2

In order to prove that a Random Discounting Representation exists, we first prove it exists

for a subset of menus. For each finite J ⊂ T such that 0 ∈ J , let HJ be the subset of

streams such that f (t) = w for all t 6∈ J , where the existence of w follows from Lemma

2. Let KJ ⊂ K be the subset of menus that only contain streams in HJ . Hence, we can

define a RCR ρJ on KJ such that for all F ∈ KJ and f ∈ F ,

ρJF (f) = ρF (f) .
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By the same argument as in Lu (2016), for every finite J , we can find a measure νJ on

∆J and a vN-M utility u on ∆X such that for every F ∈ KJ and f ∈ F

ρJF (f) = νJ {p ∈ ∆J | p · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F}

Note that Initial Determinism and Time Monotonicity imply that this u is fixed and

independent of J . We normalize u : ∆X → [0, 1] such that u (w) = 0. Choose f ∈ H such

that u (f (t)) = 1 for some t ∈ T and f (s) = w for all s 6= t. Then by Impatience, for any

J such that {t, t+ 1} ⊂ J , we have

1 = ρ
(
f, f1

)
= ρJ

(
f, f1

)
= νJ {p ∈ ∆J | p (t) ≥ p (t+ 1)} .

Hence, p is decreasing νJ -a.s. for all finite J where 0 ∈ J . For any J ⊂ T such that 0 ∈ J ,
let DJ ⊂ [0, 1]J be such that D (0) = 1 for all D ∈ DJ . We can define a measure µJ on

DJ such that for every F ∈ KJ and f ∈ F ,

ρJF (f) = µJ
{
D ∈ DJ

∣∣ D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F
}
.

We now extend this representation from any finite J to all of T by using Kolmogorov’s

Extension Theorem. Hence, we need to check for the following consistency condition. Let

0 ∈ S ⊂ J ⊂ T . For any F ∈ KS and f ∈ F , µS
{
D ∈ DS

∣∣ D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F
}

=

ρSF (f) = ρF (f) = ρJF (f) = µJ
{
D ∈ DJ

∣∣ D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F
}
.

Let f ∈ HS and p ∈ ∆X such that u (p) = a ∈ [0, 1]. Since p1w ∈ HS , we then have

µS
{
D ∈ DS

∣∣ D · (u ◦ f) ≥ a
}

= µJ
{
D ∈ DJ

∣∣ D · (u ◦ f) ≥ a
}
.

In other words, for all z ∈ [0, 1]S , the distribution of D · z under µS is the same as that

under µJ . As in the proof of Theorem 1, we can easily extend this for all z ∈ RS+ so by

Cramer-Wold, it must be that µS is exactly the projection of µJ on DS . Formally, if we

let χJS : DJ → DS be the projection mapping from DJ to DS , then

µS = µJ ◦ χ−1JS .
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Hence, from Kolmogorov’s Extension Theorem, we know there exists a measure µ on DT

such that for any finite J ⊂ T and F ∈ KJ ,

ρF (f) = µJ
{
D ∈ DJ

∣∣ D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F
}

= µ
{
D ∈ DT

∣∣ D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F
}
.

Moreover, we can assume that µ is a measure on the Borel σ-algebra corresponding to

pointwise convergence on the product topology (see exercise I.6.35 of Cinlar (2011)).

We now need to generalize the representation for all F ∈ K. First, for every f ∈ F ∈ K
and finite t ∈ T , define the following two sets of maximizing discount functions

N (f, F ) :=
{
D ∈ DT

∣∣ D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F
}
,

N t (f, F ) :=
{
D ∈ DT

∣∣ D · (u ◦ (ftw)− u ◦ (gtw)) ≥ 0 for all g ∈ F
}
.

Note that N (f, F ) is well-defined only if D · (u ◦ f − u ◦ g) is well-defined for all f, g ∈ F .

Lemma 3. Suppose D · (u ◦ f − u ◦ g) is well-defined for all f, g ∈ F and D ∈ DT . Then

(1) ρF (f) = µ (N (f, F )) for all f ∈ F ,

(2) µ
{
D ∈ DT

∣∣ D · (u ◦ f − u ◦ g) = 0
}
∈ {0, 1} for all f, g ∈ F .

Proof. We first show that if the premise holds, then ρF (f) ≤ µ (N (f, F )). In order to

show this, we prove that lim supt 1N t(f,F ) (D) ≤ 1N (f,F ) (D) for all D ∈ DT . Suppose

lim supt 1N t(f,F ) (D) = 1 so for any t ∈ T , we can find some t′ > t where D ∈ N t′ (f, F )

or ∑
s≤t′

D (s) · (u (f (s))− u (g (s))) ≥ 0

for all g ∈ F . Since D · (u ◦ f − u ◦ g) is well-defined for all f, g ∈ F and D ∈ DT , this
implies that

D · (u ◦ f − u ◦ g) = lim
t

∑
s≤t

D (s) · (u (f (s))− u (g (s))) ≥ 0

for all g ∈ F so D ∈ N (f, F ). Hence, lim supt 1N t(f,F ) (D) ≤ 1N (f,F ) (D). Recall that
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Ftw = {ftw|f ∈ F}. Now, by Fatou’s Lemma,

lim
t
ρFtw (ftw) = lim

t
µ
(
N t (f, F )

)
≤
∫
DT

lim sup
t

1N t(f,F ) (D)µ (dD)

≤
∫
DT

1N (f,F ) (D)µ (dD) = µ (N (f, F ))

Since Ftw → F , by Continuity, this implies that

ρF (f) = lim
t
ρFtw (ftw) ≤ µ (N (f, F )) (A.1)

as desired.

Before completing the proof of part (1), we will now prove part (2). Fix f, g ∈ F

and note that if f and g are tied, then from equation (A.1), we have 1 = ρ (f, g) ≤
µ (N (f, {f, g})) and 1 = ρ (g, f) ≤ µ (N (g, {f, g})) so µ

{
D ∈ DT

∣∣ D · (u ◦ f − u ◦ g) = 0
}

=

1.

Now, suppose f and g are not tied. Let r ∈ ∆X be such that u (r) = 1. By linearity,

we can assume without loss of generality that 1
2u (f (0)) + 1

2u (g (0)) < u (r). For any

ε > 0, let pε ∈ ∆X be such that u (pε) = 1
2u (f (0)) + 1

2u (g (0)) + ε and define hε ∈ H
such that hε (0) = pε and hε (t) = 1

2f (t) + 1
2g (t) for all t > 0. Now, for all D ∈ DT ,

D·(u ◦ f − u ◦ hε) = D·
(
u ◦ f − u ◦

(
1

2
f +

1

2
g

)
− (ε, 0, 0, . . . )

)
=

1

2
D·(u ◦ f − u ◦ g)−ε,

which is well-defined as D · (u ◦ f − u ◦ g) is well-defined.

By symmetric argument, D · (u ◦ g − u ◦ hε) = 1
2D · (u ◦ g − u ◦ f)− ε. For all positive

number ε, define Fε = {f, g, hε}. Then,

N (f, Fε) =
{
D ∈ DT

∣∣ D · (u ◦ f − u ◦ g) ≥ 2ε
}
,

N (g, Fε) =
{
D ∈ DT

∣∣ D · (u ◦ g − u ◦ f) ≥ 2ε
}
.
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Note that N (f, Fε) ∩N (g, Fε) = Ø as ε > 0. Now, from equation (A.1) again, we have

ρFε (f) + ρFε (g) ≤ µ (N (f, Fε)) + µ (N (g, Fε)) = µ (N (f, Fε) ∪N (g, Fε)) ≤ 1.

Consider a sequence of menus Fεi as εi → 0. Suppose there are three menus Fεi , Fεj ,

and Fεk in this sequence that are not in K0. Since f and g are not tied, it must be that

hεi , hεj , and hεk are tied with f or g, respectively. Therefore, there exist l, l′ ∈ {i, j, k}
such that hεl and hεl′ are tied with f or both of them are tied with g. Without loss

of generality, we assume that hεj and hεk are both tied with f (the case for both tied

with g is symmetric). Hence, hεj and hεk must be tied, so hεj and 1
2f + 1

2g must be

tied. By Linearity, this implies that r1w is tied with w, contradicting the representation

from above. Hence, there cannot be more than two menus in this sequence that are not

in K0. So we can always remove menus Fεi that are not in K0. Hence, we can assume

that Fεi ∈ K0 for all i without loss of generality. By Continuity, we thus have that

1 = ρ (f, g) +ρ (g, f) = limi

(
ρFεi

(f) + ρFεi
(g)
)
≤ limi µ (N (f, Fεi) ∪N (g, Fεi)). Hence,

µ
{
D ∈ DT

∣∣ D · (u ◦ f − u ◦ g) = 0
}

= lim
i
µ
{
D ∈ DT

∣∣ − 2εi < D · (u ◦ f − u ◦ g) < 2εi
}

= 1− lim
i
µ (N (f, Fεi) ∪N (g, Fεi)) = 0.

This proves part (2) of the lemma.

We now return to the proof of part (1). Suppose that the inequality in equation (A.1)

is strict for some f ∈ F . Let F ∗ ⊂ F be the subset of streams in F that are not tied and

f ∈ F . If we sum over all the non-tied streams F ∗, then

1 =
∑
g∈F ∗

ρF (g) <
∑
g∈F ∗

µ (N (g, F )) ≤ 1,

where the last inequality follows from part (2) as F ∗ contains no ties. Since this cannot

be true, it must be that ρF (f) = µ (N (f, F )) for all f ∈ F . This completes the proof for

the lemma.

We now complete the sufficiency proof. Let r ∈ ∆X such that u (r) = 1 and note that
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wtr → w as t→∞. Now, for every D ∈ DT ,

St (D) := D · (u ◦ (wtr)) =
∑
s≥t

D (s)

is well-defined, which may be infinite. Hence, by part (1) of Lemma 3 and Continuity,

we have 1 = limt ρ (w,wtr) = limt µ
{
D ∈ DT | St (D) = 0

}
, as {w,wtr} → {w}. Since

S is decreasing in t, limt→∞ St is well-defined, although it could be infinite. Moreover, if

St (D) = 0 for some t ∈ T , then limt′→∞ St′ (D) ≤ St (D) = 0. So for all D ∈ DT ,

lim sup
t

1{St(D)=0} (D) ≤ 1{limt→∞ St(D)=0} (D) .

By Fatou’s Lemma again,

1 = lim
t

∫
DT

1{St(D)=0} (D)µ (dD)

≤
∫
DT

lim sup
t

1{St(D)=0} (D)µ (dD)

≤
∫
DT

1{limt→∞ St(D)=0} (D)µ (dD) = µ
{
D ∈ DT

∣∣∣ lim
t→∞

St (D) = 0
}
.

Hence, limt→∞
∑

s≥tD (s) = 0 µ-a.s.. Note this implies that D · (u ◦ f − u ◦ g) con-

verges for all f, g ∈ F . Since D is decreasing µ-a.s. follows trivially from Impatience,

µ (D) = 1. Hence, by part (1) of Lemma 3, we have for all F ∈ K and f ∈ F ,

ρF (f) = µ {D ∈ D | D · (u ◦ f) ≥ D · (u ◦ g) for all g ∈ F} .

Moreover, the regularity of µ follows from part (2) of Lemma 3. We thus have a Random

Discounting Representation as desired.

A.2.3 Necessity of Theorem 2

We now prove necessity of the axioms under a Random Discounting Representation. Note

that Monotonicity, Linearity, Extremeness and Nondegeneracy follows by similar argument

as in Lu (2016). To see Initial Determinism, note that if f (t) = g (t) for all t > 0 and
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f, g ∈ F , then for any f ∈ F , ρF (f) = µ {D ∈ D | u (f (0)) ≥ u (g (0)) for all g ∈ F} ∈
{0, 1} , as desired. To see Time Monotonicity, note that for f ∈ F , if u (f (t)) ≥ u (g (t))

for all g ∈ F , ρF (f) = µ {D ∈ D | D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F} = 1, as desired.

To see Impatience, note that

ρ
(
f, f t

)
= µ

{
D ∈ D | D ·

(
u ◦ f − u ◦ f t

)
≥ 0
}

= µ

{
D ∈ D |

∑
s∈T

(D (s)−D (s+ t))u(f (s)) ≥ 0

}
= 1

as D is decreasing µ-a.s..

Finally, we prove Continuity. Let Fk → F where Fk, F ∈ K0. Note that for any

f, g ∈ Fk, f and g are not tied. Since µ is regular, this implies that D · (u ◦ f − u ◦ g) = 0

with µ-measure zero. Now, define

I :=
⋃

f,g∈Fk∪F
{D ∈ D | D · (u ◦ f) = D · (u ◦ g)}

as the set of all discount functions that rank some f, g ∈ Fk ∪ F as the same. Note that

µ (I) = 0 so if we let D∗ := D\I, then µ (D∗) = 1. Let µ∗ be the restriction of µ on D∗.
We will now define random variables ξk : D∗ → H and ξ : D∗ → H that have distributions

ρFk
and ρF respectively. For each Fk, let ξk : D∗ → H be such that

ξk (D) := arg max
f∈Fk

D · (u ◦ f)

and define ξ similarly for F . Note that these are well-defined because there exists a unique

maximizer f for D ∈ D∗. For any measurable set E ⊂ H,

ξ−1k (E) = {D ∈ D∗| ξk (D) ∈ E ∩ Fk}

=
⋃

f∈E∩Fk

{D ∈ D∗|D · (u ◦ f) > D · (u ◦ g) ∀g ∈ Fk}
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which is measurable. Hence, ξk and ξ are random variables. Note that

µ∗ ◦ ξ−1k (E)

=
∑

f∈E∩Fk

µ∗ {D ∈ D∗|D · (u ◦ f) > D · (u ◦ g) ∀g ∈ Fk}

=
∑

f∈E∩Fk

µ {D ∈ D|D · (u ◦ f) ≥ D · (u ◦ g) ∀g ∈ Fk}

= ρFk
(E ∩ Fk)

= ρFk
(E)

so ρFk
and ρF are the distributions of ξk and ξ respectively. Note that for anyD ∈ D∗ ⊂ D,

D · (u ◦ f) is bounded and thus continuous in f . Hence, by the Maximum Theorem,

ξk (D) = arg maxf∈Fk
D · (u ◦ f) is upper hemi-continuous in Fk. Since ξk is single-valued,

ξk is continuous as a function of Fk. Since Fk → F , ξk → ξ µ∗-a.s.. Finally, since a.s.

convergence implies convergence in distribution, ρFk
→ ρF as desired.

A.3 Proof of Proposition 1

A.3.1 Sufficiency Proposition 1

Let ρ be represented by (µ, u) and suppose satisfies Decreasing Impatience. Choose r ∈
∆X such that u (r) = 1. Define h ∈ H such that h (2) = r, and h (s) = w for all

s 6= 2. Also, for any a ∈ (0, 1], define fa, ga ∈ H such that ga = ah−1 + (1− a)w and

fa = ag−1a +(1− a)w. Hence, we can write down the utility streams for fa, ga, h as follows:

u ◦ h = (0, 0, 1, 0, . . . ) , u ◦ ga = (0, a, 0, 0, . . . ) , u ◦ fa =
(
a2, 0, 0, 0, . . .

)
.

Moreover, for any t ∈ T , the utility streams for the t-delayed streams f ta, gta, ht are as

follows:

u ◦ ht = (0, . . . 0, 0, 1, 0, . . . ) , u ◦ gta = (0, . . . 0, a, 0, 0, . . . ) , u ◦ f ta =
(
0, . . . a2, 0, 0, 0, . . .

)
,
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where h (2) = r. Note that for D ∈ D

D ·
(
u ◦ ht

)
= D (t+ 2) , D ·

(
u ◦ gta

)
= D (t+ 1) a, D ·

(
u ◦ f ta

)
= D (t) a2.

Fix t ∈ T and let F ta :=
{
f ta, g

t
a, h

t
}
for any a > 0.

Because of the regularity, note that either D (t+ 1) = 0 µ-a.s. or D (t+ 1) > 0 µ-

a.s..27 If D (t+ 1) = 0 µ-a.s., then Proposition 1 holds. So consider the latter case. Since

discount functions are decreasing, we know that D (t) ≥ D (t+ 1) > 0 µ-a.s.. We will now

show that µ-a.s.
D (t+ 1)

D (t)
≤ D (t+ 2)

D (t+ 1)
.

First, we show that there is at most one value a ∈ (0, 1] such that gta and ht are tied.

To see this suppose there exists b 6= a such that gtb and h
t are tied. Then, since both gta

and gtb are tied with ht, then D (t+ 1) a = D (t+ 1) b which implies that D (t+ 1) = 0

µ-a.s. a contradiction. Next, we show that there is at most one value a ∈ (0, 1] such that

gta and f ta are tied. To see this suppose there exists another b 6= a such that gtb and f tb

are tied. Then, we have D (t+ 1) = D (t) a and D (t+ 1) = D (t) b which implies that

D (t) = 0 µ-a.s. again a contradiction.

Therefore, for almost all a ∈ (0, 1], we have gta is not tied with f ta nor ht. Since F ta

contains no ties, by Decreasing Impatience,

0 = ρF t
a

(
gta
)

= µ
{
D ∈ D

∣∣ D (t+ 1) a ≥ D (t+ 2) and D (t+ 1) a ≥ D (t) a2
}

= µ

{
D ∈ D

∣∣∣∣ D (t+ 1)

D (t)
≥ a ≥ D (t+ 2)

D (t+ 1)

}
= µ {D ∈ D | Xt ≥ a ≥ Yt } ,

where we define Xt := D(t+1)
D(t) ≥ 0 and Yt := D(t+2)

D(t+1) ≥ 0. Hence,

0 = µ {D ∈ D | Xt ≥ a ≥ Yt } .
27Consider a consumption stream f such that f(t+ 1) = r and f(s) = w for all s 6= t+ 1. By Determinism,

ρ(f, w) ∈ {0, 1}. If ρ(w, f) = 0, then D (t+ 1) > 0 µ-a.s.. Otherwise, D (t+ 1) = 0 µ-a.s..
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Since this is true for almost all a > 0, it must be that µ-a.s.

D (t+ 1)

D (t)
= Xt ≤ Yt =

D (t+ 2)

D (t+ 1)

as desired.

A.3.2 Necessity of Proposition 1

Let ρ be represented by (µ, u). Suppose f = ag−1 + (1− a)w and g = ah−1 + (1− a)w.

Note that if g is tied with either f or h, then ρ{f,g,h} ({f, h}) = 1 trivially so suppose g is

not tied with f nor h. We will show that ρ{f,g,h} (g) = 0. Let T+ be the set of t ∈ T such

that D (t+ 1) > 0 µ-a.s.. Note that

D · (u ◦ g − u ◦ h) =
∑
t∈T

[D (t+ 1) a−D (t+ 2)]u (h (t+ 2))

≤
∑
t∈T+

[D (t+ 1) a−D (t+ 2)]u (h (t+ 2))

=
∑
t∈T+

D (t)
D (t+ 1)

D (t)

(
a− D (t+ 2)

D (t+ 1)

)
u (h (t+ 2))

≤
∑
t∈T+

D (t)
D (t+ 1)

D (t)

(
a− D (t+ 1)

D (t)

)
u (h (t+ 2))

since D(t+2)
D(t+1) ≥

D(t+1)
D(t) µ-a.s. for all t ∈ T+. Note that

D (t+ 1)

D (t)

(
a− D (t+ 1)

D (t)

)
≤ a

(
a− D (t+ 1)

D (t)

)
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so

D · (u ◦ g − u ◦ h) ≤
∑
t∈T+

D (t) a

(
a− D (t+ 1)

D (t)

)
u (h (t+ 2))

=
∑
t∈T+

(
D (t) a2 −D (t+ 1) a

)
u (h (t+ 2))

≤
∑
t∈T

(
D (t) a2 −D (t+ 1) a

)
u (h (t+ 2))

= D · (u ◦ f − u ◦ g) .

Thus, D · (u ◦ f) ≤ D · (u ◦ g) implies D · (u ◦ g) ≤ D · (u ◦ h) so ρ{f,g,h} (g) = 0 as desired.

A.4 Proof of Theorems 3 and 4

We will now prove Theorems 3 and 4. We will prove them in reverse order as Theorem 3

follows easily from Theorem 4. Let ρ be represented by (µ, u)

A.4.1 Necessity of Theorem 4

Suppose µ is quasi-hyperbolic. We will show that ρ satisfies Decreasing Impatience and

Weak Stochastic Stationary. Note that since µ is quasi-hyperbolic, for every t > 0

D (1)

D (0)
= βδ ≤ δ =

D (t+ 1)

D (t)

Hence, ρ satisfies Decreasing Impatience by Proposition 1. We now prove Weak Stochastic

Stationarity. Now, for any t ≥ 1 and f, g ∈ F ,

D ·
(
u ◦ f t − u ◦ gt

)
=
∑
s

βδs+t [u (f (s))− u (g (s))]

= δt−1
∑
s

βδs+1 [u (f (s))− u (g (s))]

= δt−1
[
D ·
(
u ◦ f1 − u ◦ g1

)]
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Hence,

ρF t

(
f t
)

= µ
{
D ∈ D

∣∣ D · (u ◦ f t − u ◦ gt) ≥ 0 for all gt ∈ F t
}

= µ
{
D ∈ D

∣∣D · (u ◦ f1 − u ◦ g1) ≥ 0 for all g1 ∈ F 1
}

= ρF 1

(
f1
)

so Weak Stochastic Stationarity is satisfied.

A.4.2 Necessity of Theorem 3

We now prove that if µ is exponential, then ρ must satisfy Decreasing Impatience and

Stochastic Stationarity. Note that Decreasing Impatience follows immediately from the

necessity proof of Theorem 4. To show Stochastic Stationarity, note that for any t ∈ T
and f, g ∈ F ,

D ·
(
u ◦ f t − u ◦ gt

)
=
∑
s∈T

δs+t [u (f (s))− u (g (s))] = δt [D · (u ◦ f − u ◦ g)] .

Hence,

ρF t

(
f t
)

= µ
{
D ∈ D

∣∣ D · (u ◦ f t − u ◦ gt) ≥ 0 for all gt ∈ F t
}

= µ {D ∈ D | D · (u ◦ f − u ◦ g) ≥ 0 for all g ∈ F } = ρF (f) ,

so Stochastic Stationarity is satisfied.

A.4.3 Sufficiency of Theorem 4

We now prove the sufficiency of Theorem 4. First, we show the following lemma.

Lemma 4. Let ρ be represented by (µ, u).

(1) If ρ satisfies Weak Stochastic Stationarity, then for all t ≥ 1, µ {D ∈ D | D (1) = 0} =

µ {D ∈ D | D (t) = 0}.

(2) If ρ satisfies Stochastic Stationarity, then for all t ∈ T , µ {D ∈ D | D (t) = 0} = 0.

Proof. Suppose ρ is represented by (µ, u). Let r ∈ ∆X be such that u (r) = 1. We prove

the two cases separately.
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(1) First, suppose ρ satisfies Weak Stochastic Stationarity. Let f ∈ H be such that

f (0) = r and f (s) = w for all s > 0. Now, by Weak Stochastic Stationarity,

for any t ≥ 1, µ {D ∈ D | D (1) = 0} = ρ
(
w1, f1

)
= ρ

(
wt, f t

)
= ρ

(
w, f t

)
=

µ {D ∈ D | D (t) = 0}, as desired.

(2) Now, suppose ρ satisfies Stochastic Stationarity. If we let h ∈ H be such that

h (0) = r and h (s) = w for all s > 0, then by the same argument as above we

have µ {D ∈ D | D (0) = 0} = ρ (w, h) = ρ
(
wt, ht

)
= µ {D ∈ D | D (t) = 0}. Since

D (0) = 1, the result follows.

Since ρ satisfies Weak Stochastic Stationarity, from Lemma 4 and the fact that µ is

regular, we know that for all t ≥ 1,

µ {D ∈ D | D (t) = 0} = µ {D ∈ D | D (1) = 0} ∈ {0, 1} (A.2)

By this result, it suffices to consider the following two cases.

Case 1: µ {D ∈ D | D (1) = 0} = 1. Then by (A.2), µ {D ∈ D | D (t) = 0} = 1 for all

t ≥ 1. Then since T is countable, this implies that D (t) = 0 for all t ≥ 1 µ-a.s.. Hence,

ρF (f) = µ {D ∈ D | u (f (0)) ≥ u (g (0)) for all g ∈ F }, so µ is trivially quasi-hyperbolic

with β = 0.

Case 2: µ {D ∈ D | D (1) = 0} = 0. Then by (A.2), µ {D ∈ D | D (t) = 0} = 0 for all

t ≥ 1. Since D ≥ 0, µ {D ∈ D | D (t) > 0} = 1 for all t ≥ 1. So D(t) > 0 µ a.s. for all

t ∈ T . Hence, D(t+ 1)/D(t) is well defined µ a.s. for all t ∈ T .
Choose r ∈ ∆X such that u(r) = 1. Define h ∈ H such that h (2) = r, and h (s) = w

for all s 6= 2. Also, for any a ∈ (0, 1], define fa, ga ∈ H such that ga = ah−1 + (1− a)w

and fa = ag−1a + (1− a)w. Hence, we can write down the utility streams for fa, ga, h as

follows:

u ◦ h = (0, 0, 1, 0, . . . ) , u ◦ ga = (0, a, 0, 0, . . . ) , u ◦ fa =
(
a2, 0, 0, 0, . . .

)
.

Moreover, for any t ∈ T , the utility streams for the t-delayed streams f ta, gta, ht are as
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follows:

u ◦ ht = (0, . . . 0, 0, 1, 0, . . . ) , u ◦ gta = (0, . . . 0, a, 0, 0, . . . ) , u ◦ f ta =
(
0, . . . a2, 0, 0, 0, . . .

)
,

where h(2) = r. Note that for D ∈ D

D ·
(
u ◦ ht

)
= D (t+ 2) , D ·

(
u ◦ gta

)
= D (t+ 1) a, D ·

(
u ◦ f ta

)
= D (t) a2.

Let F ta :=
{
f ta, g

t
a, h

t
}
. We now consider two cases.

Subcase 2.1: Suppose there exists some a > 0 such that g1a is tied with either f1a or h1.

Consider the case in which g1a is tied with h1. Hence, ρ
(
g1a, h

1
)

= 1 = ρ
(
h1, g1a

)
. By Weak

Stochastic Stationarity, for all t ∈ T , ρ
(
gta, h

t
)

= ρ
(
g1a, h

1
)

= 1 = ρ
(
h1, g1a

)
= ρ

(
ht, gta

)
.

Hence, for all t ∈ T , 1 = µ {D ∈ D | D (t+ 1) a = D (t+ 2)}. Thus, if we let β = D(1)
a

and δ = a ≤ 1, then for all t > 0, we have µ-a.s.

D (t) =
D (1)

a
at = βδt

The case for g1a is tied with f1a is symmetric. Finally, we show that β ≤ 1 µ-a.s. By

Proposition 1 again,

βδ = D (1) = X0 ≤ Y0 =
D (2)

D (1)
= δ

so β ≤ 1 µ-a.s. Hence µ is quasi-hyperbolic as desired.

Subcase 2.2: Now consider the second case where g1a is not tied with f1a nor h1 for all

a > 0. Note that by Weak Stochastic Stationarity, this implies that for all t ≥ 1, gta is not

tied with f ta nor ht.

Note that
{
f t+1
a , gt+1

a

}
= a

{
gta, h

t
}

+ (1− a)w. Hence, by Weak Stochastic Station-

arity and Linearity ρ
(
f ta, g

t
a

)
= ρ

(
f t+1
a , gt+1

a

)
= ρ

(
gta, h

t
)
for any t ≥ 1. This implies that

for every t ≥ 1,

µ
{
D ∈ D

∣∣ D (t) a2 ≥ D (t+ 1) a
}

= µ {D ∈ D | D (t+ 1) a ≥ D (t+ 2)}

So µ {D ∈ D | Xt ≤ a} = µ {D ∈ D | Yt ≤ a}, where Xt := D(t+1)
D(t) ≥ 0 and Yt :=
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D(t+2)
D(t+1) ≥ 0. By the inclusion-exclusion principle28, we have

µ {D ∈ D | Xt ≤ a ≤ Yt }

= µ {D ∈ D | Xt ≤ a}+ µ {D ∈ D | a ≤ Yt } − µ {D ∈ D | Xt ≤ a or a ≤ Yt }

= µ {D ∈ D | Yt ≤ a}+ µ {D ∈ D | a ≤ Yt } − µ {D ∈ D | Xt ≤ a or a ≤ Yt }

= 1− µ {D ∈ D | Xt ≤ a or a ≤ Yt }

= µ {D ∈ D | Xt ≥ a ≥ Yt }

where the third and fourth equalities hold because gta is not tied with f ta nor ht. Since ρ

satisfies Decreasing Impatience, by Proposition 1, Xt ≤ Yt µ-a.s. for all t ∈ T . Since this

holds for any a > 0, it must be that for all t ≥ 1,

D (t+ 1)

D (t)
= Xt = Yt =

D (t+ 2)

D (t+ 1)

µ-a.s. If we let δ = D(2)
D(1) ≤ 1 and β = D(1)2

D(2) , then for all t > 0,

D (t) = D (1)

(
D (2)

D (1)

)t−1
= βδt

µ-a.s. We can prove β ≤ 1 µ-a.s. as in the previous case.

A.4.4 Sufficiency of Theorem 3

Now, suppose ρ satisfies Stochastic Stationary and Decreasing Impatience. From Lemma

4, we know that D (t) > 0 µ-a.s. for all t ∈ T . As in the sufficiency proof for Theorem 4,

define the streams h, ga, fa and ht, gta, f ta such that for D ∈ D,

D ·
(
u ◦ ht

)
= D (t+ 2) , D ·

(
u ◦ gta

)
= D (t+ 1) a, D ·

(
u ◦ f ta

)
= D (t) a2.

Again we consider two cases.

Case 1: Suppose there exists some a > 0 such that ga is tied with either fa or h. Consider

28 For any two events A and B, P (A ∩B) = P (A) + P (B)− P (A ∪B).
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the case in which ga is tied with h. Hence, ρ (ga, h) = 1 = ρ (h, ga). By Stochastic

Stationarity, for all t ≥ −1, ρ
(
gta, h

t
)

= 1 = ρ
(
ht, gta

)
. Hence, for all t ∈ T

1 = µ {D ∈ D | D (t) a = D (t+ 1)} = µ

{
D ∈ D

∣∣∣∣ D (t+ 1)

D (t)
= a

}
.

If we let δ = a, then for all t ∈ T , we have µ-a.s.

D (t) = D (0) at = δt

so µ is exponential as desired. As before, the case for ga is tied with fa is symmetric.

Case 2: Now consider the second case where ga is not tied with fa nor h for all a > 0.

By Stochastic Stationarity, this implies that for all t ∈ T , gta is not tied with f ta nor

ht. Let Xt := D(t+1)
D(t) and Yt := D(t+2)

D(t+1) as before. Now, by the same argument as in

the sufficiency proof for Theorem 4, Stochastic Stationarity and Linearity, imply that

µ {D ∈ D | Xt ≤ a ≤ Yt } = µ {D ∈ D | Xt ≥ a ≥ Yt }. By the same argument as before,

Proposition 1 implies that for all t ∈ T , Xt ≤ Yt µ-a.s.. Since this holds for any a > 0, it

must be that for all t ∈ T ,

D (t+ 1)

D (t)
= Xt = Yt =

D (t+ 2)

D (t+ 1)

µ-a.s.. If we let δ = D (1), then for all t ∈ T , D (t) = D (1)t = δt µ-a.s.. Since D is

decreasing, δ ≤ 1 µ-a.s.. Thus, µ is exponential as desired.

A.5 Proof of Proposition 2

Obviously, µ is not exponential. To show µ satisfies Stochastic Stationarity, choose any

d ∈ T . Consider the case in which d is even and d = 2n. Then (Dω(d), Dω(d+ 1), . . . ) =

exp(−2n)Dω.29 Therefore, for any f, g ∈ H,

(Dω(d), Dω(d+1), . . . )·u◦f > (Dω(d), Dω(d+1), . . . )·u◦g ⇔ Dω ·u◦f > Dω ·u◦g. (A.3)
29(Dω(d), Dω(d + 1), . . . ) = (exp(−2n), exp(−2n − 1

2 − ω), exp(−2(n + 1)), exp(−2(n + 1) − 1
2 − ω), . . . ) =

exp(−2n)(1, exp(− 1
2 − ω), exp(−2), exp(− 5

2 − ω), . . . ) = exp(−2n)Dω.
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So for any F ⊂ H and f ∈ F ,

ρF d(fd)

= µ{Dω|(Dω(d), Dω(d+ 1), . . . ) · u ◦ f > (Dω(d), Dω(d+ 1), . . . ) · u ◦ g for all g ∈ F}
= µ{Dω|Dω · u ◦ f ≥ Dω · u ◦ g for all g ∈ F} (∵ (A.3))

= ρF (f).

Consider the case in which d is odd and d = 2n + 1. Then (Dω(d), Dω(d + 1), . . . ) =

exp(−2n)D1−ω.30 Therefore, for any f, g ∈ H,

(Dω(d), Dω(d+1), . . . ) ·u◦f > (Dω(d), Dω(d+1), . . . ) ·u◦g ⇔ D1−ω ·u◦f > D1−ω ·u◦g.
(A.4)

Let I be a uniform distribution over [0, 1]. Then for any F ⊂ H and f ∈ F ,

ρF d(fd)

= µ{Dω|(Dω(d), Dω(d+ 1), . . . ) · u ◦ f > (Dω(d), Dω(d+ 1), . . . ) · u ◦ g for all g ∈ F}
= I({ω|(Dω(d), Dω(d+ 1), . . . ) · u ◦ f > (Dω(d), Dω(d+ 1), . . . ) · u ◦ g for all g ∈ F})
= I({ω|D1−ω · u ◦ f > D1−ω · u ◦ g for all g ∈ F}) (∵ (A.4))

= I({1− ω|D1−ω · u ◦ f > D1−ω · u ◦ g for all g ∈ F}) (∵ I is uniform)

= µ{Dω|Dω · u ◦ f > Dω · u ◦ g for all g ∈ F}
= ρF (f).

Finally, we show that µ violates Decreasing Impatience. Fix r ∈ ∆X such that u (r) =

1 > 0 = u (w). Define h ∈ H such that h (2) = r, and h (t) = w for all t ∈ T such that

t 6= 2. Fix a ∈ (0, 1). Define f, g ∈ H by f = ag−1 + (1− a)w and g = ah−1 + (1− a)w.

Then for all s ∈ T

Dω · u ◦ g > Dω · u ◦ h⇔ Dω
1 a > Dω

2 ⇔ a > exp(−3
2 + ω),

Dω · u ◦ g > Dω · u ◦ f ⇔ Dω
1 a > a2 ⇔ exp(−1

2 − ω) > a.

Note that exp(−1
2−ω) > exp(−3

2 +ω) if and only if 1
2 > ω. Let a = exp(−1). Then for

30(Dω(d), Dω(d+1), . . . ) = (exp(−2n− 1
2 −ω), exp(−2(n+1)), exp(−2(n+1)− 1

2 −ω), exp(−2(n+2)), . . . ) =
exp(−2n− 1

2 − ω)(1, exp(− 1
2 − (1− ω)), exp(−2), exp(− 5

2 − (1− ω)), . . . ) = exp(−2n)D1−ω.
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all ω < 1
2 , we have exp(−1

2 − ω) > exp(−1) > exp(−3
2 + ω). Hence, ρ{f,g,h}(g) = I

(
ω <

1
2

)
= 1

2 . This contradicts Decreasing Impatience.

A.6 Proof of Theorem 5

First, we prove the following simple lemma.

Lemma 5. Let u, v ∈ U be non-constant and suppose u (p) > u (q) implies v (p) ≥ v (q)

for all p, q ∈ ∆X. Then v is an affine transformation of u.

Proof. Suppose there exist p, q ∈ ∆X such that u (p) > u (q) and v (p) = v (q). By

the linearity of u and v, there exists ε ∈ (0, 1) such that u ((1− ε)p+ εw) > u (q) and

v ((1− ε)p+ εw) < v (q), which gives a contradiction. Therefore, we have u (p) > u (q)

implies v (p) > v (q) for all p, q ∈ ∆X. The converse can be proved in the same way, so we

have u (p) > u (q) if and only if v (p) > v (q) for all p, q ∈ ∆X. Therefore, v is an affine

transformation of u.

We now prove Theorem 5. For any finite J ⊂ T such that 0 ∈ J , define HJ ⊂ H

and KJ ⊂ K as in the proof of Theorem 2. From Lu (2016), Monotonicity, Linearity,

Extremeness and Continuity imply that we can find a measure νJ on ∆J × UJ such that

for all F ∈ KJ ,

ρJF (f) = νJ

{
(r, u) ∈ ∆J × UJ

∣∣∣∣∣ ∑
t∈J

r (t) [ut (f (t))− ut (g (t))] ≥ 0 for all g ∈ F
}

Moreover, νJ satisfies regularity.

For every t ∈ T and p ∈ ∆X, let pt ∈ H denote the stream such that pt (t) = p and

pt (s) = w for all s 6= t. Let J∗ ⊂ J denote the set of time periods such that there exists

p, q ∈ ∆X where pt and qt that are not tied. If t ∈ J∗, then r (t) [ut (p)− ut (q)] 6= 0

νJ -a.s. which implies that r (t) > 0 νJ -a.s.. Moreover, this also implies that ut is non-

constant νJ -a.s.. Note that by Initial Nondegeneracy, 0 ∈ J∗. By Worst, we also know

that u0 ∈ U∗.
Now, consider J = {0, . . . , n} for some n ∈ T . Order J∗ = {0, t1, . . . , tm} and first

consider t1. We will show that for any p, q ∈ ∆X, u0 (p) > u0 (q) implies ut1 (p) ≥ ut1 (q)
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νJ -a.s.. Suppose otherwise, so

0 < νJ
{

(r, u) ∈ ∆J × UJ |u0 (p) > u0 (q) and ut1 (p) < ut1 (q)
}
. (A.5)

Consider streams f = pt1w, g = qt1w and

h (t) =


p if t < t1

q if t = t1

w if t > t1

Note that f, g, h ∈ HJ and let F = {f, g, h} ∈ KJ . Moreover, note that if h is tied with

g, then u0 (p) = u0 (q) νJ -a.s. contradicting the strict inequality in (A.5). The case for if

h is tied with f is symmetric so h is tied with neither f nor g. By Time Invariance,

0 = ρF (h) = νJ
{

(r, u) ∈ ∆J × UJ |u0 (p) ≥ u0 (q) and ut1 (p) ≤ ut1 (q)
}

contradicting inequality (A.5). This means that u0 (p) > u0 (q) implies ut1 (p) ≥ ut1 (q)

νJ -a.s.

By the continuity of vNM utilities, we have u0 (p) > u0 (q) implies ut1 (p) ≥ ut1 (q)

for all p, q ∈ ∆X, νJ -a.s.. Lemma 5 implies that ut1 is an affine transformation of u0

νJ -a.s.. We can repeat the above argument for all t ∈ J∗ to show that ut+1 is an affine

transformation of ut νJ -a.s.. Therefore, every ut is an affine transformation of u0 νJ -a.s.

for all t ∈ J∗.
Now, consider some s ∈ J\J∗ and suppose there exists some t ∈ J∗ where s < t. Let

p ∈ ∆X such that u0 (p) > u0 (w) νJ -a.s.. Such p exists by Initial Nondegeneracy. By

Impatience, we have

1 = ρ (ps, pt) = νJ
{

(r, u) ∈ ∆J × UJ | r (t) [ut (w)− ut (p)] ≥ 0
}
.

Since t ∈ J∗, ut is an affine transformation of u0 so ut (p) > ut (w) νJ -a.s.. This implies

that r (t) = 0 νJ -a.s. contradicting the fact that t ∈ J∗. Thus, if s ∈ J\J∗, then for all
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t ∈ J if t > s, then t ∈ J\J∗.
As in the proof of Theorem 2, by Impatience, we can show that r is decreasing on J∗.

Once t ∈ J \ J∗ appears, all s > t belongs to J \ J∗. So we can thus set r (s) = 0 for all

s ∈ J\J∗. Moreover, r will still be decreasing over time.

To summarize, we can define a measure πJ on ∆J × U∗ such that for all F ∈ KJ ,

ρJF (f) = πJ

{
(r, u) ∈ ∆J × U∗

∣∣∣∣∣∑
t∈J

r (t) [u (f (t))− u (g (t))] ≥ 0 for all g ∈ F
}

where r is decreasing in t πJ -a.s.. The rest of the proof follows exactly as in the proof of

Theorem 2 where we use Kolmogorov’s Theorem to extend this to all menus in K.
Finally, we prove the necessity of Time Invariance. Consider f ∈ F such that f (s) ∈

{p, q} for all s ≤ t. Note that if u (p) ≥ u (q), then
∑

s≤tD (t) [u (p)− u (f (t))] ≥ 0. On

the other hand, if u (q) ≥ u (p), then
∑

s≤tD (t) [u (q)− u (f (t))] ≥ 0. This implies that

ρFtw ({ptw, qtw}) = 1 as desired. The necessity of Worst and Initial Nondegeneracy are

trivial.

A.7 Proof of Theorem 6

Note that if π = η, then ρ (f, g) = τ (f, g) for all f, g ∈ H immediately from the repre-

sentation. Thus, suppose ρ and τ agree on all binary choices. First, note that for any

p, q ∈ ∆X,

ρ (p1g, q1g) = π {(D,u) ∈ D × U∗ | u (p) ≥ u (q)}

= τ (p1g, q1g) = η {(D,u) ∈ D × U∗ | u (p) ≥ u (q)}

Thus, we can assume that utilities under both π and η have the same worst consumption

w. Moreover, we can find some b ∈ X such that u (b) > u (w) both π and η -a.s.. Without

loss of generality, normalize the utilities so that u (w) = 0 and u (b) = 1.

Let J be a finite subset of T . Let n = |X| be the number of prizes and let Hn ⊂ H
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denote the set of streams f such that f (t, x) ≤ 1
n for all t ∈ T and x 6= w. Note that

∑
t

D (t)u (f (t)) =
∑
t

D (t)
∑
x

[f (t)] (x)u (x) =
∑
t,x 6=w

D (t)u (x) f (t, x) ∈ [0, 1]

=
∑
t,x6=w

wD,u (t, x) f (t, x) ∈ [0, 1]

where wD,u (t, x) := D (t)u (x). Then wD,u ∈
[
0, 1n

]J×(n−1) and we can think of f as

corresponding to the vector f ∈
[
0, 1n

]J×(n−1). We thus have for all f ∈ Hn,

ρ (a (b1w) + (1− a)w, f) = π {(D,u) ∈ D × U∗ | wD,u · f ≤ a}

= τ (a (b1w) + (1− a)w, f) = η {(D,u) ∈ D × U∗ | wD,u · f ≤ a}

Since this is true for all f ∈
[
0, 1n

]J×(n−1), by using Cramer-Wold as in the proof for

Theorem 1, we have the distribution of wD,u is the same under π as under η. Finally, note

that wD,u = wD′,u′ implies (D,u) = (D′, u′) so π = η as desired

A.8 Proof of Proposition 4

For each t ∈ T and F ∈ K, recall that we defined F t = {f t|f ∈ F}. For each F ∈ Kt, we
can define F−t = {f−t|f ∈ F}, where f−t is an element of H such that (f−t)t = f .

Let ρ (F ) := ρt
(
F t
)
for all F ∈ K. Since ρt satisfies the axioms of Theorem 2, there

exists a
(
µt, ut

)
that represents it. Thus, for s ≥ t,

ρF (f) = ρtF t

(
f t
)

= ρtF s (f s)

= µt

{
D ∈ D

∣∣∣∣∣ ∑
t′

D
(
t′
)
ut
(
f s
(
t′
))
≥
∑
t′

D
(
t′
)
ut
(
gs
(
t′
))
∀g ∈ F

}

= µts

{
D ∈ D

∣∣∣∣∣ ∑
t′

D
(
t′
)
ut
(
f
(
t′
))
≥
∑
t′

D
(
t′
)
ut
(
g
(
t′
))
∀g ∈ F

}

where µts is the marginal distribution of µt for (D (t′))t′≥s. Note that the first and last

equations follow from the definitions, the second from Stochastic Stationarity and the third

from the representation. It then follows that ρ is represented by
(
µts, u

t
)
.

49



By Stochastic Dynamic Consistency, we have ρt (F ) = ρs (F ) for t < s and F ∈ Ks.
Thus, ρF (f) = ρsF s (fs) so ρ is also represented by (µss, u

s). Theorem 1 then implies that

µts = µss and ut = αus + β for α > 0. Since ρt also satisfy the axioms of Theorem 3,

µt is just a single-dimensional distribution. Thus, µts = µss for all s ≥ t implies that the

distribution of δ is the same for all ρt. Defining µ = µ0 and u = u0 yield the desired

conclusion.

Next we assume the representation and show that {ρt}t∈T satisfies the axioms. In

Section 6.2, we have shown that {ρt}t∈T satisfies Stochastic Dynamic Consistency. For

each t ∈ T , ρt satisfies the axioms in Theorems 2 and 3 (defined with Kt instead of K) as
in the proof of Theorem 2 and 3.

B Appendix: Decreasing Impatience and Extreme-

ness

In this section, we demonstrate a technical relationship between Decreasing Impatience

and Extremeness. We show that Decreasing Impatience in the random exponential model

plays an analogous role as Extremeness in the random expected utility model of Gul and

Pesendorfer (2006).

Let X be a finite set and ∆X be the set of lotteries over X. Let C and C ′ be finite sets

of lotteries. We say C is a translate of C ′ if and only if C = C ′ + (p− q) for some p ∈ C
and q ∈ C ′.31 First, note that in the lottery setup, Stochastic Stationarity is equivalent

to Linearity∗, a weaker condition than Linearity.

Axiom (Linearity∗). ρC (f) = ρC′ (f
′) if C and f are translates of C ′ and f ′ respectively.

Clearly, Linearity implies Linearity∗. There are random non-expected utility represen-

tations that yield random choice rules that satisfy Linearity∗ but not Extremeness. We

now describe one such example. Let X = {x, y} so we can associate each lottery with a

31More explicitly, there exists p ∈ C and q ∈ C ′ such that C = {r + p− q | r ∈ C ′ }.
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point p ∈ [0, 1]. Let ω be uniformly distributed on [0, 1] and let

uω (p) := |p− ω| ,

vω (p) := − |p− ω| .

Consider a random utility that puts 1
2 weight on uω and 1

2 weight on vω. To show that

this violates Extremeness, let C =
{

0, 12 , 1
}
. Since the mixed lottery 1

2 is never chosen in

C under uω, we have that

ρC

(
1

2

)
=

1

2
· P
{
ω ∈ [0, 1]

∣∣∣∣ vω (1

2

)
≥ max {vω (0) , vω (1)}

}
=

1

4
> 0.

To show that this satisfies Linearity∗, suppose C = {p1, . . . , pk} with p1 < p2 < · · · < pk.

Now, for each pi such that 1 < i < k, we have

ρC (pi) =
1

2

(
pi+1 − pi−1

2

)

which is unchanged if we translate C. For p1, we have

ρC (p1) =
1

2

(
p1 + p2

2

)
+

1

2

(
1− p1 + pk

2

)
=

1

2

(
1− pk − p2

2

)

which is again unchanged if we translate C. By symmetric argument, the same holds for pk

as well, so Linearity∗ is satisfied, but this is clearly not a random expected utility model.

By imposing Extremeness however, we are able to obtain a random expected utility

representation. In other words, similar to Decreasing Impatience, Extremeness provides

the additional restrictions to ensure the existence of a random utility representation with

linear utilities.32

Proposition 5. Suppose ρ has a random utility representation. Then ρ satisfies Linearity

if and only if it satisfies Linearity∗ and Extremeness

Proof. Since Linearity implies Linearity∗, all we need to show is that Linearity∗ and Ex-
32While Proposition 5 shows how Extremeness ensures the existent of a random linear utility representation,

it does not guarantee that the utilities in any random utility representation must be linear. In this sense, our
Theorem 3 is stronger.
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tremeness imply Linearity. Let C ′ = aC + (1− a) r for some r ∈ ∆X and a ∈ (0, 1). By

Extremeness, we can only consider the extreme set of points of C without loss of general-

ity. Suppose C has k extreme points. Hence, we can translate C ′ k-times such that each

translated C ′i overlaps with an extreme point pi ∈ C and conv (C ′i) ⊂ conv (C). Now,

define

E :=
⋃
i

C ′i

Note that ext (E) = C. By Extremeness, we know that ρE (C) = 1. By Monotonicity, we

have

ρE (pi) ≤ ρC (pi)

for all pi ∈ C. Since pi are also the extreme points of E, by Extremeness, we also have

that
∑

i ρE (pi) = 1. Hence, it must be that ρE (pi) = ρC (pi) for all i. Moreover, by

Monotonicity again, we have that for each i,

ρC′i (pi) ≥ ρE (pi)

as C ′i ⊂ E for all i. If we let p′i = api + (1− a) r ∈ C ′, then by Linearity∗, we have

ρC′
(
p′i
)

= ρC′i (pi) ≥ ρE (pi) = ρC (pi)

for all pi ∈ C. Since this is true for all i, and by Extremeness again
∑

i ρC′ (p
′
i) = 1, it

must be that ρC′ (p′i) = ρC (pi) for all i. Hence, Linearity is satisfied as desired.
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