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Abstract

We propose a new measure of deviations from expected utility theory. For any positive

number e , we give a characterization of the datasets with a rationalization that is within e (in

beliefs, utility, or perceived prices) of expected utility theory. The number e can then be used

as a measure of how far the data is to expected utility theory. We apply our methodology

to data from three large-scale experiments. Many subjects in those experiments are consis-

tent with utility maximization, but not with expected utility maximization. Our measure of

distance to expected utility is correlated with subjects’ demographic characteristics.
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1 Introduction

Revealed preference theory has traditionally, through its 80-year history, dealt with the empir-

ical content of general utility maximization. The idea is to understand which observed choice

behaviors are consistent with the hypothesis of utility maximization. Recent research has, in

contrast, turned to the empirical content of speci�c utility theories. Mostly the focus has been on

expected utility (EU): EU is the workhorse model of economics under risk and uncertainty, and

recent theoretical work seeks to characterize the observable choice behaviors that are consistent

with expected utility maximization. The EU hypothesis has been subject to substantial empirical

scrutiny, but mainly in experiments targeted to test its axiomatic foundations. Empirical work us-

ing market data to test EU is much less common. At the same time, a number of recent empirical

revealed-preference studies use data on choices under risk and uncertainty, in which participants

choose state-contingent consumption from budget sets, and the state is unknown. These studies

have focused on testing for “rationality,” or consistency with general utility maximization, but we

shall argue that the same data can be used to test for the more narrow theory of EU maximiza-

tion. In our paper, we seek to bridge the gap between the theoretical understanding of expected

utility theory, and the machinery needed to analyze experimental data on choices under risk and

uncertainty, so as to use the data on choices in market settings to test for consistency with EU

maximization.

Imagine an agent making economic decisions, choosing contingent consumption given mar-

ket prices and income. Revealed preference theory studies the consistency of such choices with

utility maximization. The best-known result in the literature says that an agent’s behavior is

consistent if and only if it satis�es the Generalized Axiom of Revealed Preference, GARP. Consis-

tency, however, is a black or white question. The agent’s choices either satisfy GARP or they do

not. Our paper is about EU and about shades of grey. Our contribution is to describe the degree

to which choices are consistent with EU. We propose a measure of the degree of a choice dataset’s

consistency with EU, and we use our measure to analyze several large datasets on choices under

risk.

Consistency with GARP is a black or white question, but revealed preference theory has devel-

oped measures of the degree of consistency with general utility maximization. The most widely

used measure is the Critical Cost E�ciency Index (CCEI) proposed by Afriat (1972). The basic idea

in the CCEI is to �ctitiously decrease an agent’s budget so that fewer options are revealed pre-

ferred to a given choice. The CCEI has been widely used to analyze experimental data on choices

from budget sets. See, for example, Choi et al. (2007), Ahn et al. (2014), Choi et al. (2014), Carvalho

et al. (2016), Carvalho and Silverman (2019), and Halevy et al. (2018). All of these experimental

studies involve subjects making decisions under risk or uncertainty, and CCEI was proposed as

2



a measure of consistency with general utility maximization, not EU, the most commonly-used

theory to explain choices under risk or uncertainty.
1

Of course, there is nothing wrong with studying general utility maximization in environments

with risk and uncertainty, but the data is ideally suited to studying theories of choice under

risk and uncertainty, and it should be of great interest to evaluate EU using this data. We shall

argue (on both theoretical and empirical grounds) that our method provides a more accurate and

intuitive measure of consistency with EU than using CCEI.

Our main contribution is to propose a measure of how far a dataset is from being consis-

tent with EU. The measure is di�erent from CCEI: we explain theoretically why our measure,

and not CCEI, best captures the distance of a dataset to EU theory. The key insight is that our

measure captures perturbations, or errors, that are re�ected in deviations from the �rst-order

conditions for optimizing behavior. In this sense, our paper is about “approximate” EU rational-

izations. Such perturbations can be (equivalently) interpreted as random utility, miss-perceived

or miss-measured prices, as well as incorrect beliefs. Indeed our measure captures the size of the

perturbations that would be needed to reconcile the observed choice data with EU.

We also argue on empirical grounds that our measure passes “smell tests” that CCEI fails. For

example, CCEI ignores the manifest violations of EU where subjects make �rst-order stochas-

tically dominated choices. And CCEI does not correlate well with the property of downward-

sloping demand, a property that is implied by EU maximization. Roughly speaking, prices and

quantities must be inversely related, subject to certain quali�cations. Such a property can be seen

to characterize consistency with EU in the risk-averse case. We also provide a revealed preference

axiomatization of the measure based on observed prices and consumption.

In this paper, we �rst lay out the implications of EU that cannot be captured by CCEI, and

give an overview of our approach. After a theoretical discussion of our measure of consistency

(with objective EU discussed in Section 3 and subjective EU in Online Appendix B), we present

an empirical application using data from experiments on choices under risk (Section 4).

Our empirical application has two purposes. The �rst is to illustrate how our method can

be applied and to argue that our measure of distance to EU is useful and sensible. The second

is to o�er new insights into the empirical validity of EU. We use data from three large-scale

experiments (Choi et al., 2014; Carvalho et al., 2016; Carvalho and Silverman, 2019), each with over

1,000 subjects, that involve choices under risk. Consistency with general utility maximization is

well understood in these studies using CCEI. We test for EU theory using our methodology, and

obtain some important �ndings.

1
See Allen and Rehbeck (2021), Echenique (2021) and Polisson and Quah (2022) for a general discussion of the

CCEI, irrespective of the question of testing for EU that is the focus of the present paper.
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There are three main conclusions from our empirical application. The �rst is that there is a

sizable gap between consistency with general utility maximization and consistency with expected

utility. Many subjects are utility maximizers, and display a CCEI that is very close to one, but

are far from consistent with EU as measured by our proposed distance to EU rationality. Indeed,

subjects with a CCEI that is close to one exhibit very varied degrees of consistency with EU. If

one were to estimate, for example, a risk-averse utility from subjects with a high CCEI, then the

exercise would be misspeci�ed and the estimation meaningless. We show that subjects who are

close to being EU rational according to our measure, have much smaller estimated coe�cients

of risk aversion than subjects who are far from being EU rational (and for whom the model is

misspeci�ed). No such correlation is found with CCEI.

The second main conclusion is that a simple and intuitive “downward-sloping demand” prop-

erty is strongly related to distance to EU. When consumption in each state reacts negatively to

state-prices (actually risk-neutral prices), then subjects are typically much closer to being EU ra-

tional than when this property is violated. Another, perhaps more expected, feature of the data

is that subjects who exhibit some kind of violation of monotonicity with respect to �rst-order

stochastic dominance are far from being consistent with EU.

The third conclusion emerges from looking at the correlation between demographic charac-

teristics and consistency with EU. We �nd that younger subjects, those who have high cognitive

abilities, and those who are working, are closer to EU behavior than older, low cognitive ability,

or non-working, subjects. For some of the three experiments, we also �nd that highly educated,

high-income, and male subjects, are closer to EU. These observations suggest that our measure

complements CCEI as an empirical toolkit and provides additional insights on datasets that had

been analyzed primarily with CCEI.

1.1 How to Measure Deviations from EU

The CCEI is meant to test deviations from general utility maximization. If an agent’s behavior

is not consistent with utility maximization, then it cannot possibly be consistent with EU maxi-

mization. Thus it stands to reason that if an agent’s behavior is far from being rationalizable as

measured by CCEI, then it is also far from being rationalizable with an EU function. The problem

is, of course, that an agent’s behavior may be rationalizable with a general utility function but

not with EU.

Broadly speaking, the CCEI proceeds by “amending” inconsistent choices through the device

of changing income. This works for general utility maximization, but it is the wrong way to

amend choices that are inconsistent with EU. Since EU is about getting marginal rates of substi-

tution right, prices, not incomes, need to be changed. The problem is illustrated with a simple
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example in Figure 1.

Suppose that there are two states of the world, labeled 1 and 2. An agent purchases a state-

contingent asset x = (x1,x2), given Arrow-Debreu prices p = (p1,p2) and her income. Prices

and income de�ne a budget set. In Figure 1A, we are given two choices for the agent, xa and xb ,

for two di�erent budgets. The choices in Figure 1A are inconsistent with utility maximization:

they violate the weak axiom of revealed preference (WARP). When xb (xa) was chosen, xa (xb ,

respectively) was strictly inside of the budget set. This violation of WARP can be resolved by

shifting down the budget line associated with choice xb to the dashed green line passing through

xa . Alternatively, the violation can be resolved by shifting down the budget line associated with

choice xa to the dashed blue line passing through xb . CCEI is the smallest of the two shifts that

are needed: the smallest proportion of shifting down a budget line to resolve WARP violation.

Therefore, the CCEI of this dataset is given by the dashed green line passing through xa . That is,

the CCEI is (pb · xa)/(pb · xb).

Now consider the example in Figure 1B. There are again two choices, xa and xb , for two

di�erent budgets. These choices do not violate WARP, and comply with the theory of utility

maximization with CCEI = 1. The choices in the panel are not, however, compatible with EU.

To see why, assume that the dataset were rationalized by an expected utility: µ1u(x
k
1
) + µ2u(x

k
2
),

where (µ1, µ2) are the probabilities of the two states, and u is a (smooth) concave utility function

over money. Note that the slope of a tangent line to the indi�erence curve at a point xk is equal to

the marginal rate of substitution (MRS): µ1u
′(xk

1
)/µ2u

′(xk
2
). Moreover, at the 45-degree line (i.e.,

when xk
1
= xk

2
), the slope must be equal to µ1��

��u′(xk
1
)/µ2��

��u′(xk
2
) = µ1/µ2. This is a contradiction

because in Figure 1B, the two tangent lines (green dashed lines) associated with xa and xb cross

each other. The source of the problem lies in which observations are below, and which are above

the diagonal line. Note that xa is above the diagonal, which means that the MRS at the 45-degree
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line must be �atter than the budget line; xb is below the diagonal, which means that the MRS at

the 45-degree line must be steeper than the budget line. The latter budget line is steeper than

the former, which is inconsistent with MRS being the same on any point of the 45-degree line.

Figure 1C shows an example of choices that are consistent with EU. Note that tangent lines at the

45-degree line are parallel in this case. Here the choice of xa below the diagonal is made at the

�atter budget set, while xb above the diagonal is at the steeper budget line. In consequence, the

choices in Figure 1C are consistent with the EU.

Importantly, the violation in Figure 1B cannot be resolved by shifting budget lines up or down,

or more generally by adjusting agents’ expenditures. The reason is that the empirical content of
expected utility is captured by the relation between prices and marginal rates of substitution. The
slope, not the level, of the budget line, is what matters. The basic insight comes from the equality

of marginal rates of substitution and relative prices:

µ1u
′(xk

1
)

µ2u′(x
k
2
)
=
pk

1

pk
2

. (1)

Since marginal utility is decreasing, equation (1) imposes a negative relation between prices and

quantities. The distance to EU is directly related to how far the data is to complying with such

a negative relation between prices and quantities. The formal connection is established in The-

orem 2. Empirically, as we shall see, the degree of compliance of a subject’s choices with this

“downward sloping demand” property, goes a long way to capturing the degree of compliance of

the subject’s choices with EU.

We propose a measure of how close the data is to being consistent with EU maximization.

Our measure is based on the idea that marginal rates of substitution have to conform to EU

maximization: whether data conform to equation (1). If one “perturbs” marginal utility enough,

then a dataset is always consistent with expected utility. Our measure is simply a measure of

how large of a perturbation is needed to rationalize the data. Perturbations of marginal utility

can be interpreted in three di�erent, but equivalent, ways: as measurement error on prices, as

random shocks to marginal utility in the fashion of random utility theory (McFadden, 1974), or

as perturbations to agents’ beliefs. For example, if the data in Figure 1B is “e away” from being

consistent with expected utility given a positive number e , then one can �nd beliefs µa and µb ,

one for each observation so that EU is maximized for these observation-speci�c beliefs, and the

degree of perturbation of beliefs is bounded by e .

Our measure can be applied in settings where probabilities are known and objective, for which

we develop a theory in Section 3, and an application to experimental data in Section 4. It can

also be applied to settings where probabilities are not known, and therefore subjective (Online

Appendix B).
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Finally, we propose a statistical methodology for testing the null hypothesis of consistency

with EU (Section 4.3). Our test relies on a set of auxiliary assumptions. The test indicates moderate

levels of rejection of the EU hypothesis.

1.2 Related Literature

Revealed preference theory has developed tests for consistency with general utility maximization.

A test, in this literature, provides a yes or no answer to the question of whether the data is

consistent with uility maximization. The seminal papers include Samuelson (1938), Afriat (1967),

and Varian (1982). See Chambers and Echenique (2016) for an exposition of the basic theory.

More recent work has explored the testable implications of EU theory. This work includes

Green and Srivastava (1986), Chambers et al. (2016), Kübler et al. (2014), Echenique and Saito

(2015), and Polisson et al. (2020). The �rst four papers focus, as we do here, on rationalizability

for risk-averse agents. Green and Srivastava (1986) and Chambers et al. (2016) allow for many

goods in each state, which our methodology cannot accommodate. Polisson et al. (2020) present a

general approach to testing that allows for a test of EU in isolation, not jointly with risk aversion.

Our assumptions are the same as in Kübler et al. (2014) and Echenique and Saito (2015). In fact

the techniques used to obtain an axiomatization of the data that is consistent with EU, and some

perturbation of the model, is very much borrowed from Echenique and Saito (2015). This paper

turns the �rst-order conditions into a linear system, which is �rst perturbed for technical reasons,

so as to have a system with rational coe�cients, and then analyzed using duality to obtain the

axioms. The technical perturbation has to, in the end, be undone. In the present paper, the

perturbation has a totally di�erent meaning. It is introduced to relax the conditions needed for

consistency with EU, and when we work out the dual, the relaxation is summarized by a single

number (e), which is incorporated into the axiom. In sum, the two papers rely on the same broad

techniques, but di�er substantially in how they are used, and the nature of the results.

Compared to most of the existing revealed preference literature on EU, our focus is on mea-

suring consistency with EU, not on providing a test. Thus our paper is inscribed in the literature

that seeks to measure the degree of compliance of a dataset with a theory. Our assumption of

monetary payo�s and risk aversion is restrictive but consistent with how EU theory is used in

economics. Many economic models assume EU together with risk aversion. Our results speak

directly to the empirical relevance of such models. A further motivation for focusing on risk

aversion is empirical: in the data we have looked at, corner choices are very rare. This would

rule out risk-seeking behavior in the context of EU. Thus, arguably, EU and risk-loving behavior

would not be a candidate explanation of the experimental data we examine in this paper.

As mentioned, the CCEI was proposed by Afriat (1972). Varian (1990) proposes a modi�cation,
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and Echenique et al. (2011) and Dean and Martin (2016) propose alternative measures. Dziewulski

(2020) provides a foundation for CCEI based on the model in Dziewulski (2016), which seeks to

rationalize violations of utility-maximizing behavior with a model of just-noticeable di�erences.

Compared to the literature based on the CCEI, we present explicit model speci�cations of the

errors that would explain the deviation from EU. Each of these speci�cations introduce errors in

beliefs, prices, or utilities. As a consequence, our measure of consistency with EU is based on

three possible “stories” for why choices are inconsistent with EU, even though we consider one

story at a time and do not study them jointly. And, as we have explained above, the nature of

EU-consistent choices is poorly re�ected in the CCEI’s budget adjustments.

Apesteguia and Ballester (2015) propose a general method to measure the distance between

theory and data in revealed preference settings. For each possible preference relation, they cal-

culate the swaps index, which counts the number of alternatives that must be swapped with the

chosen alternative in order for the preference relation to rationalize the data. Then, Apesteguia

and Ballester (2015) consider the preference relation that minimizes the total number of swaps in

all the observations, weighted by their relative occurrence in the data. Apesteguia and Ballester

(2015) assume that there is a �nite number of alternatives, and thus a �nite number of preference

relations over the set of alternatives. Because of the �niteness, they can calculate the swaps index

for each preference relation and �nd the preference relation that minimizes the swaps index. This

method by Apesteguia and Ballester (2015) is not directly applicable to our setup because in our

setup, a set of alternatives is a budget set and contains in�nitely many elements; moreover, the

number of expected utility preferences relation is in�nite.
2

There are many other studies of revealed preference that are based on a notion of distance

between the theory and the data. For example, Halevy et al. (2018) uses such distances as a

guide in estimating parametric functional forms for the utility function. Echenique et al. (2020)

focus on discounted utility, and use a statistical formulation that is connected to how we use e

in the present paper (this work does not develop the measure methodologically as we do here,

and does not include an axiomatization that captures the degree of consistency). In terms of

testing consistency with EU, Friedman et al. (2018) use the correlation of changes in quantities

with changes in prices as an intuitive notion of distance to the theory. They do not explore the

methodological aspects of this measure, but we �nd in our work that it is closely related to the

measure we propose. Finally, Aguiar and Kashaev (2021) considers a general approach towards

2
In Appendix D.1 of Apesteguia and Ballester (2015), they consider the swaps index for expected utility prefer-

ences while assuming the �niteness of the set of alternatives. In their Appendix D.3, without axiomatization, they

consider the swaps index for an in�nite set of alternatives using the Lebesgue measure to “count” the number of

swaps. However, they do not study the case where the number of alternatives is in�nite and the preference relations

are expected utility.
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testing models that are formulated through �rst-order conditions. They focus on measurement

error as a source of perturbations, which is one of the sources considered in our paper, but they

focus for the most part on problems of intertemporal choice. Their methodology is particularly

useful for identi�cation and estimation.

Polisson et al. (2020) develop a general method called the Generalized Restriction of In�nite

Domain (GRID) for testing consistency with models of choice under risk and uncertainty. Using

GRID, they provide a way to calculate CCEI for departures from EU. Importantly, and in contrast

with our measure, their approach does not rely on risk aversion. They present measures of de-

parture from EU and risk-averse EU. We compare empirically our measure to theirs in Section 4.2

(the Online Appendix has additional details). Su�ce it to say here that the measures are similar,

but distinct, when applied to the data, and that the di�erences cannot be attributed to risk aver-

sion. Theoretically, our approach has the advantage of modeling a speci�c source of deviations

from EU, and our results connect the measure to certain observable behavioral patterns. These

include exact behavioral patterns described by the theorems, but also an empirically motivated

observation that our measure captures compliance with downward-sloping demand.

Finally, perhaps the most closely related paper is de Clippel and Rozen (forthcoming), who

measure consistency with utility maximization by way of departures from �rst-order conditions,

an approach similar to ours. Their FOC-Departure Index (FDI) can be computed for di�erent

classes of utility functions. In particular, their FDI measure for risk-averse expected utility is

equivalent to our measure, except for the use of di�erent scaling (their measure ε ∈ [0, 1] is the

same as a transformation of our measure e ≥ 0, with ε = e/(1 + e)). While de Clippel and Rozen

propose the same measure as we do, there are some signi�cant di�erences. First, the axiomatic

exercise in both papers are very di�erent. Their axioms are on measures of compliance with �rst-

order conditions, while our axiomatization is a standard revealed-preference characterizations of

the dataset that are a particular distance from being consistent with EU. They take as primitives

the weak orderings on pairs of price and utility gradient (derivatives of utility function), and then

propose certain axioms on such orderings, which turn out to pin down the FDI.
3

In contrast, our

paper proposes an axiom, which takes the form of a test (much like GARP is a test), that describes

the dataset that are a distance e from being OEU- (or SEU-) rational. A second di�erence with de

Clippel and Rozen is that we show how our measure can be used as a statistical test, an avenue

that they do not pursue. Finally, there are also some key di�erences in the empirical exercise in

both papers. We put signi�cant emphasis on the connection with downward-sloping demand,

again an aspect that they do not investigate. The result in their Proposition 8 is perhaps closest

3
In their paper, (p,д) � (p0,д0) means that “the utility gradient д is farther apart from the price vector p than д0

is from p0.”
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in spirit to our exercise, where they show that computing the measure reduces to checking a set

of inequalities. See Remarks C.1 and C.2 in Online Appendix C of our paper. Finally, we should

emphasize that de Clippel and Rozen’s work is independent and contemporaneous to ours.

2 Model

Let S be a �nite set of states. Let ∆++(S) = {µ ∈ R
|S |
++ |

∑
s∈S µs = 1} denote the set of strictly posi-

tive probability measures on S . In our model, the objects of choice are state-contingent monetary

payo�s, or monetary acts. A monetary act is a vector in R|S |+ .

De�nition 1. A dataset is a �nite collection of pairs (x ,p) ∈ R|S |+ × R
|S |
++.

The interpretation of a dataset (xk ,pk)K
k=1

is that it describesK purchases of a state-contingent

payo� xk at some given vector of prices pk , and income pk · xk =
∑

s∈S p
k
s x

k
s . LetK denote the set

{1, . . . ,K}. For any pricesp ∈ R|S |++ and positive number I > 0, the setB(p, I ) = {y ∈ R|S |+ | p ·y ≤ I }

is the budget set de�ned by p and I .

Expected utility theory requires a decision maker to solve the problem

max

x∈B(p,I )

∑
s∈S

µsu(xs), (2)

when faced with prices p ∈ R|S |++ and income I > 0, where µ ∈ ∆++(S) is a belief andu is a concave

utility function over money. We are interested in concave u; an assumption that corresponds to

risk aversion.

The belief µ will have two interpretations in our model. First, in Section 3, we shall focus on

decisions taken under risk. The belief µ will be a known “objective” probability measure µ∗ ∈

∆++(S). Then, in Online Appendix B, we study choice under uncertainty. Consequently, The

belief µ will be a subjective beliefs, which is unobservable to us as outside observers.

The following de�nition formalizes the concept of as-if choices (Echenique and Saito, 2015).

De�nition 2. A dataset (xk ,pk)K
k=1

is Objective Expected Utility rational if there exists a concave
and strictly increasing function u : R+ → R such that, for all k ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µ∗su(ys) ≤
∑
s∈S

µ∗su(x
k
s ),

where µ∗ ∈ ∆++(S) is an objective probability. A dataset (xk ,pk)K
k=1

is Subjective Expected Utility

rational if there exist µ ∈ ∆++(S) and a concave and strictly increasing function u : R+ → R such
that, for all k ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(x
k
s ).
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When imposed on a dataset, expected utility maximization (2) may be too demanding. We

are interested in situations where the model in (2) holds approximately. As a result, we shall

relax (2) by “perturbing” some elements of the model. The exercise will be to see if a dataset is

consistent with the model in which some elements have been perturbed. Speci�cally, we shall

perturb beliefs, prices, or utilities.

First, consider a perturbation of beliefs. We allow µ to be di�erent for each choice problem k .

That is, given price p ∈ R|S |++ and income I > 0 in choice problem k , a decision maker solves the

problem

max

x∈B(p,I )

∑
s∈S

µksu(xs), (3)

where {µk}k∈K ⊂ ∆++(S) is a set of beliefs and u is a concave utility function over money.

In the second place, consider a perturbation of prices. Our consumer faces perturbed prices

p̃ks = ε
k
s p

k
s , with a perturbation εks that depends on the choice problem k and the state s . A decision

maker solves the problem

max

x∈B(p̃,I )

∑
s∈S

µsu(xs),

when faced with income I > 0 and the perturbed prices p̃ks = ε
k
s p

k
s for each k ∈ K and s ∈ S . Here

{εks }s∈S,k∈K is a set of perturbations, and u is a concave utility function over money.

Finally, consider a perturbation of utility u. We allow u to depend on the choice problem k

and the realization of the state s . We suppose that the utility of consumption xs in state s is given

by εks u(xs), with εks being a multiplicative perturbation in utility. To sum up, a decision maker

solves the problem

max

x∈B(p,I )

∑
s∈S

µsε
k
s u(xs),

when faced with prices p ∈ R|S |++ and income I > 0. As before, {εks }s∈S,k∈K is a set of perturbations

and u is a concave utility function over money.

Observe that our three sources of perturbations have di�erent interpretations, each can be

traced back to a long-standing tradition for how errors are introduced in economic models. Per-

turbed prices can be thought of a prices subject to measurement error, measurement error being

a very common source of perturbations in econometrics (Griliches, 1986). Perturbed utility is

an instance of random utility models (McFadden, 1974). Finally, perturbations of beliefs can be

thought of as a kind of random utility, or as an inability to exactly use probabilities. Note that we

perturb one source at a time and do not consider combinations of perturbations.
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3 Perturbed Objective Expected Utility

In this section, we discuss choice under risk: there exists a known “objective” belief µ∗ ∈ ∆++(S)

that determines the realization of states. The experiments we discuss in Section 4 are all on choice

under risk.

As mentioned above, we go through each of the sources of perturbation: beliefs, utility, and

prices. We seek to understand how large a perturbation has to be in order to rationalize a dataset.

It turns out that, for this purpose, all sources of perturbations are equivalent.

3.1 Belief Perturbation

Deviations from EU are accommodated by allowing a di�erent belief at each observation. So we

assume a belief µk for each choice k , and allow µk to di�er from the objective µ∗. We seek to

understand how much the belief µk deviates from the objective belief µ∗ by evaluating how far

the ratio,

µks /µ
k
t

µ∗s /µ
∗
t

,

where s , t , di�ers from 1. If the ratio is larger (smaller) than one, then it means that in choice

k , the decision maker believes the relative likelihood of state s with respect to state t is larger

(smaller, respectively) than what he should believe, given the objective belief µ∗.4

Given a non-negative number e , we say that a dataset is e-belief-perturbed objective expected

utility (OEU) rational, if it can be rationalized using expected utility with perturbed beliefs for

which the relative likelihood ratios do not di�er by more than e from their objective equivalents.

De�nition 3. Let e ∈ R+. A dataset (xk ,pk)K
k=1

is e-belief-perturbed OEU rational if there exist
µk ∈ ∆++(S) for each k ∈ K , and a concave and strictly increasing function u : R+ → R, such that,
for all k ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µksu(ys) ≤
∑
s∈S

µksu(x
k
s ),

and for each k ∈ K and s, t ∈ S ,
1

1 + e
≤
µks /µ

k
t

µ∗s /µ
∗
t

≤ 1 + e . (4)

4
Alternatively, we can introduce multiplicative noise terms εks (as we do this below) and perturb beliefs by µks =

εks µ
∗
s/

∑
s ′∈S ε

k
s ′µ
∗
s ′ . Then, the ratio can be rewritten as

µks /µ
k
t

µ∗s/µ
∗
t
=
εks

εkt
.

We are interested in how much the ratio di�ers from 1.

12



When e = 0, e-belief-perturbed OEU rationality requires that µks = µ∗s for all s and k , so

the case of exact consistency with expected utility is obtained with a zero bound of belief per-

turbations. Moreover, it is easy to see that by taking e to be large enough, any dataset can be

e-belief-perturbed rationalizable.

We should note that e bounds belief perturbations for all states and observations. As such,

it can be sensitive to extreme observations and outliers (the CCEI is also subject to this critique:

see Echenique et al., 2011). In our empirical application, we carry out a robustness analysis to

account for such sensitivity (see Online Appendix F.4).

Finally, we mention a potential relationship with models of nonexpected utility. One could

think of rank-dependent utility, for example, as a way of allowing agent’s beliefs to adapt to

his observed choices. However, unlike e-belief-perturbed OEU, the nonexpected utility theory

requires some consistencies on the dependency. For example, for the case of rank-dependent

utility, the agent’s belief over the states is a�ected by the ranking of the outcomes across states.

3.2 Price Perturbation

We now turn to perturbed prices: think of them as prices measured with error. The perturbation

is a multiplicative noise term εks to the Arrow-Debreu state price pks . Thus, perturbed state prices

are εks p
k
s . Note that if εks = εkt for all s, t , then introducing the noise does not a�ect anything

because it only changes the scale of prices. In other words, what matters is how perturbations

a�ect relative prices, that is εks /ε
k
t .

We can measure how much the noise εk perturbs relative prices by evaluating how much the

ratio,

εks

εkt
,

where s , t , di�ers from 1.

De�nition 4. Let e ∈ R+. A dataset (xk ,pk)K
k=1

is e-price-perturbed OEU rational if there exists a
concave and strictly increasing function u : R+ → R, and εk ∈ R|S |+ for each k ∈ K such that, for all
k ,

y ∈ B(p̃k , p̃k · xk) =⇒
∑
s∈S

µ∗su(ys) ≤
∑
s∈S

µ∗su(x
k
s ),

where for each k ∈ K and s ∈ S
p̃ks = p

k
s ε

k
s

and for each k ∈ K and s, t ∈ S
1

1 + e
≤
εks

εkt
≤ 1 + e . (5)
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Figure 2: Illustration of e-price-perturbation. Notes: Panels A and B show the set of possible e-perturbed

budget sets with e ∈ {0.25, 1}. Panel B presents an example of price-perturbed OEU rationalization. The

solid blue lines represent the perturbed budget sets and the red curves represent the indi�erence curves

of an agent with CRRA utility function. Panel C presents the minimal price perturbation for OEU ratio-

nalization. In panels B and C, we present e-price-perturbation under the assumption that two states are

equally likely (µ∗
1
= µ∗

2
= 0.5).

It is without loss of generality to add an additional restriction that p̃k · xk = pk · xk for each

k ∈ K because what matters are the relative prices.

The idea is illustrated in Figure 2. The �gure shows how the perturbations to relative prices

a�ect budget lines, under the assumption that |S | = 2. For each value of e ∈ {0.25, 1} and

k ∈ {1, 2}, the blue area represents the set{
x ∈ R2

+

����� p̃ · x = p̃ · xk for some p̃ ∈ R2

++ such that ∀s, t ∈ S, 1

1 + e
≤
p̃s/p

k
s

p̃t/p
k
t

≤ 1 + e

}
of perturbed budget lines. The dataset in the �gure is the same as in Figure 1B, which is not

rationalizable with any expected utility function as we discussed.

Figure 2B illustrates how we rationalize the dataset in Figure 1B using price perturbation. The

blue bold lines are perturbed budget lines and the red curves are indi�erence curves of an agent

with CRRA utility function that are tangent to perturbed budget lines at each of the xk in the data.

Since the perturbed budget lines are inside the bound given by by e = 1 (blue shaded areas), we

say that the dataset is price-perturbed OEU rational with e = 1. There are other perturbations that

“work,” and in particular, the one in Panel C corresponds to the smallest amount of perturbation

we need to rationalize this dataset under µ∗
1
= µ∗

2
= 0.5.
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3.3 Utility Perturbation

Finally, we turn to perturbed utility. As explained above, perturbations are multiplicative and take

the form εks u(x
k
s ).

5
As for price perturbations, we seek to measure how much the εk perturbs

utilities at choice problem k by evaluating how much the ratio,

εks

εkt
,

where s , t , di�ers from 1.

De�nition 5. Let e ∈ R+. A dataset (xk ,pk)K
k=1

is e-utility-perturbed OEU rational if there exists
a concave and strictly increasing function u : R+ → R and εk ∈ R|S |+ for each k ∈ K such that, for
all k ,

y ∈ B(pk ,pk · xk) =⇒
∑
s∈S

µ∗s ε
k
s u(ys) ≤

∑
s∈S

µ∗s ε
k
s u(x

k
s ),

and for each k ∈ K and s, t ∈ S
1

1 + e
≤
εks

εkt
≤ 1 + e . (6)

3.4 Equivalence of Belief, Price, and Utility Perturbations

The �rst observation we make is that the three sources of perturbations are equivalent, in the

sense that for any e a dataset is e-perturbed rationalizable according to one of the sources if and

only if it is also rationalizable according to any of the other sources with the same e . By virtue

of this result, we can interpret our measure of deviations from OEU in any of the ways we have

introduced.

Theorem 1. Let e ∈ R+, and D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational;

• D is e-price-perturbed OEU rational;

• D is e-utility-perturbed OEU rational.

The proof appears in Appendix A. To see the intuition behind the equivalence, let us assume

for simplicity that u is di�erentiable. The �rst-order condition for the maximization of perturbed

utility for choice problem k is

λkpks = µ
∗
s ε

k
s u
′(xks ),

5
We consider state-contingent perturbations. As such, perturbed utilities fall outside of the domain of EU theory.

We thank Jose Apesteguía and Miguel Ballester for pointing this out to us.
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for each s ∈ S , where λk > 0 is a Lagrange multiplier. By rearranging the multiplicative noise

terms εks , we can obtain the �rst-order conditions for belief-perturbed OEU and price-perturbed

OEU.

In light of Theorem 1, we shall simply say that a dataset is e-perturbed OEU rational if it

is e-belief-perturbed OEU rational, and this will be equivalent to being e-price-perturbed OEU

rational, and e-utility-perturbed OEU rational.

3.5 Characterizations

We proceed to give a characterization of the dataset that are e-perturbed OEU rational. Speci�-

cally, given e ∈ R+, we propose a revealed preference axiom and prove that a dataset satis�es the

axiom if and only if it is e-perturbed OEU rational.

Before we state the axiom, we need to introduce some additional notation. In the current

model, where µ∗ is known and objective, what matters to an expected utility maximizer is not

the state price itself, but instead the risk-neutral price.

De�nition 6. For any dataset (pk ,xk)K
k=1

, the risk neutral price ρks ∈ R|S |++ in choice problem k at
state s is de�ned by

ρks =
pks
µ∗s
.

As in Echenique and Saito (2015), the axiom we propose involves a sequence (xkisi ,x
k ′i
s ′i
)ni=1

of

pairs satisfying certain conditions. Note that ki ,k
′
i ∈ K and si , s

′
i ∈ S in each pair (xkisi ,x

k ′i
s ′i
) ∈ R2

+,

so each object xkisi in the sequence is the payo� in state si purchased in observation ki under price

pkisi .

De�nition 7. A sequence of pairs (xkisi ,x
k ′i
s ′i
)ni=1

is called a test sequence if

(i) xkisi > x
k ′i
s ′i
for all i = 1, . . . ,n;

(ii) each k ∈ K appears as ki (on the left of the pair) the same number of times it appears as k′i
(on the right of the pair).

Echenique and Saito (2015) provide an axiom for OEU rationalization, termed the Strong Ax-

iom for Revealed Objective Expected Utility (SAROEU), which states that for any test sequence

(xkisi ,x
k ′i
s ′i
)ni=1

, we have

n∏
i=1

ρkisi

ρ
k ′i
s ′i

≤ 1. (7)
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SAROEU is equivalent to the axiom provided by Kübler et al. (2014).

It is easy to see why SAROEU is necessary for OEU rationalization. Assuming (for simplicity

of exposition) that u is di�erentiable, the �rst-order condition of the maximization problem (2)

for choice problem k is

λkpks = µ
∗
su
′(xks ), or equivalently, ρks =

u′(xks )

λk
,

where λk > 0 is a Lagrange multiplier.

By substituting this equation on the left hand side of (7), we have

n∏
i=1

ρkisi

ρ
k ′i
s ′i

=

n∏
i=1

λk
′
i

λki
·

n∏
i=1

u′(xkisi )

u′(x
k ′i
s ′i
)
≤ 1.

To see that this term is smaller than 1, note that the �rst term of the product of the λ-ratios is

equal to one because of the condition (ii) of the test sequence: all λk must cancel out. The second

term of the product of u′-ratio is less than one because of the concavity of u, and the condition (i)

of the test sequence (i.e., u′(xkisi )/u
′(x

k ′i
s ′i
) ≤ 1). Thus, SAROEU is implied. It is more complicated

to show that SAROEU is su�cient (see Echenique and Saito, 2015).

Now, e-perturbed OEU rationality allows the decision maker to use di�erent beliefs µk ∈

∆++(S) for each choice problem k . Consequently, SAROEU is not necessary for e-perturbed OEU

rationality. To see that SAROEU can be violated, note that the �rst-order condition of the max-

imization (3) for choice k is as follows: there exists a positive number (Lagrange multiplier) λk

such that for each s ∈ S ,

λkpks = µ
k
su
′(xks ), or equivalently, ρks =

µks
µ∗s

u′(xks )

λk
.

Suppose thatxks > xkt . Then (xks ,x
k
t ) is a test sequence (of length one) according to De�nition 7.

We have

ρks

ρkt
=

(
µks
µ∗s

u′(xks )

λk

) / (
µkt
µ∗t

u′(xkt )

λk

)
=
u′(xks )

u′(xkt )

µks /µ
k
t

µ∗s /µ
∗
t

.

Even though xks > xkt implies the �rst term of the ratio of u′ is less than one, the second term can

be strictly larger than one. When xks is close enough to xkt , the �rst term is almost one while the

second term can be strictly larger than one. Consequently, SAROEU can be violated.

However, by (4), we know that the second term is bounded by 1 + e . So we must have

ρks

ρkt
≤ 1 + e .
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In general, for a sequence (xkisi ,x
k ′i
s ′i
)ni=1

of pairs, one may suspect that the bound is calculated as

(1 + e)n. This is not true because if xks appears both as xkisi for some i (on the left of the pair) and

as x
k ′j
s ′j

for some j (on the right of the pair), then all µks can be canceled out. What matters is the

number of times xks appears without being canceled out. This number can be de�ned as follows.

De�nition 8. Consider any sequence (xkisi ,x
k ′i
s ′i
)ni=1

of pairs. Let (xkisi ,x
k ′i
s ′i
)ni=1
≡ σ . For any k ∈ K and

s ∈ S ,
d(σ ,k, s) = #{i | xks = xkisi } − #{i | xks = x

k ′i
s ′i
},

and
m(σ ) =

∑
s∈S

∑
k∈K :d(σ ,k,s)>0

d(σ ,k, s).

Note that, if d(σ ,k, s) is positive, then d(σ ,k, s) is the number of times µks appears as a numer-

ator without being canceled out. If it is negative, then d(σ ,k, s) is the number of times µks appears

as a denominator without being canceled out. Som(σ ) is the “net” number of terms such as µks /µ
k
t

that are present in the numerator. Thus the relevant bound is (1 + e)m(σ ).

Given the discussion above, it is easy to see that the following axiom is necessary for e-

perturbed OEU rationality.

Axiom 1 (e-Perturbed Strong Axiom for Revealed Objective Expected Utility (e-PSAROEU)). For
any test sequence of pairs (xkisi ,x

k ′i
s ′i
)ni=1
≡ σ , we have

n∏
i=1

ρkisi

ρ
k ′i
s ′i

≤ (1 + e)m(σ ).

The main result of this section is to show that the axiom is also su�cient.

Theorem 2. Given e ∈ R+, and let D be a dataset. The following are equivalent:

• D is e-belief-perturbed OEU rational.

• D satis�es e-PSAROEU.

The proof appears in Appendix A.
6

6
We should mention that Theorem 2 is similar in spirit to some of the results in Allen and Rehbeck (2020), who

consider approximate rationalizability of quasilinear utility. They present a revealed preference characterization

with a measure of error “built in” to the axiom, similar to ours, which they then use as an input to a statistical test.

The two papers were developed independently, and since the models in question are very di�erent, the results are

unrelated.
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Axioms like e-PSAROEU can be interpreted as a statement about downward-sloping demand

(see Echenique et al., 2020). For example, (xks ,x
k
s ′) with xks > xks ′ is a test sequence. If risk neutral

prices satisfy ρks > ρks ′ , then the dataset violates downward-sloping demand. Now e-PSAROEU

measures the extent of the violation by controlling the size of ρks /ρ
k
s ′ . Speci�cally, it says that

ρks /ρ
k
s ′ ≤ (1 + e), as it is easy to see that we havem(σ ) = 1 in this case. So e-PSAROEU describes

how large a violation of downward-sloping demand is allowed: when quantities are ordered so

that more is consumed in state s than in state s′, despite consumption in state s than in state s′,

when evaluated at risk-neutral prices, our axiom uses the number e to restrict the magnitude of

the extent to which price ratio is “incorrect.” Indeed, as we have already mentioned, 0-PSAROEU

is equivalent to SAROEU. And, when e = ∞, the e-PSAROEU always holds because (1 + e)m(σ ) =

∞. Now, most of the time, we shall turn the axiom on its head. We will calculate the smallest

value of e for which the data satis�es e-PSAROEU, and use this as our measure of deviations from

OEU.

In its connection to downward-sloping demand, Theorem 2 formalizes the idea of testing

OEU through the correlation of risk-neutral prices and quantities: see Friedman et al. (2022) and

our discussion in Section 4.2. Theorem 2 and the axiom e-PSAROEU give the precise form that

the downward-sloping demand property takes in order to characterize OEU, and provide a non-

parametric justi�cation to the practice of analyzing the correlation of prices and quantities. Here

it is important to account for imbalances in a test sequence. These are manifested in the value of

m(σ ). A test sequence may involve the same states appearing on the left and on the right of a pair,

for the same observation. When this occurs, any potential “violation” of OEU is inconsequential,

as it does not a�ect marginal rates of substitution. By including the number m(σ ) we account

for the degree of imbalance, which ampli�es a given error e and provides the correct slack in

satisfying downward sloping demand with error e .

Given a dataset, we shall calculate the smallest e for which the dataset satis�es e-PSAROEU.

It is easy to see that such a minimal level of e exists.
7

We explain in Online Appendix C how it is

calculated in practice.

De�nition 9. Minimal e , denoted e∗, is the smallest e′ ≥ 0 for which the data satis�es e′-PSAROEU.

The number e∗ is a crucial component of our empirical analysis. Importantly, it is the basis of

a statistical procedure for testing the null hypothesis of OEU rationality.

As mentioned above, e∗ is a bound that has to hold across all observations, and therefore may

be sensitive to extreme outliers. It is, however, easy to check the sensitivity of the calculated

7
In Online Appendix C, we show that e∗ can be obtained as a solution of minimization of a continuous function

on a compact space. Hence, the minimum exists.
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Figure 3: Minimal price perturbation for OEU rationalization. Notes: We assume µ∗
1
= µ∗

2
= 0.5. See Online

Appendix D.1 for details.

e∗ to an extreme observation. One can, for example, re-calculate e∗ after dropping one or two

observations, and look for large changes.

Finally, e∗ depends on the prices and the objective probability which a decision maker faces. In

particular, it is clear from e-PSAROEU that 1+e is bounded by the maximum ratio of risk-neutral

prices (i.e., maxk,k ′∈K,s,s ′∈S ρ
k
s /ρ

k ′

s ′ ).

Remark. It is easy to visualize perturbation corresponding to e∗ if we take the price perturbation
interpretation of e . Solving the constrained minimization problem described in Online Appendix C
gives us ratios of perturbations εks /ε

k
t , for all s, t ∈ S and k ∈ K , that corresponds to e∗. We can

compute perturbed relative prices
p̃ks

p̃kt
=
pks

pkt

εks

εkt
.

Note that perturbed budgetsmust pass through the chosen bundles. Figure 3 illustrates these “minimally-
perturbed” budget lines under which observed choices are e∗-perturbed OEU rationalizable assuming
that two states are equally likely.

4 Measuring the Deviation from Objective Expected Utility

We apply our methodology to data from three large-scale online experiments. The experiments

were implemented through representative surveys, and the task involved objective risk, not un-

certainty. The data are taken from Choi et al. (2014, hereafter CKMS), Carvalho et al. (2016,

hereafter CMW), and Carvalho and Silverman (2019, hereafter CS). All three experiments share

a common experimental structure, the portfolio allocation task introduced by Loomes (1991) and

Choi et al. (2007).
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Figure 4: Sample budget lines. A set of 25 budgets presented to one of the subjects in Choi et al. (2014).

It is worth mentioning again that the three studies focus on CCEI as a measure of violation of

basic rationality. We shall instead look at OEU, and use e∗ as our measure of violations of OEU.

The procedure for calculating e∗ is explained in Online Appendix C.

4.1 Datasets

In the experiments, subjects were presented with a sequence of decision problems under risk

in a graphical illustration of a two-dimensional budget line. They were asked to select a point

(x1,x2), an “allocation,” by clicking on the budget line (subjects were therefore forced to exhaust

the income). The coordinates of the selected point represent an allocation of points between

“accounts” 1 and 2. They received the points allocated to one of the accounts, determined at

random with an equal chance (µ∗
1
= µ∗

2
= 0.5). Subjects faced 25 budgets, as illustrated in Figure 4.

We note some interpretations of the design that matter for our posterior discussion. First,

points on the 45-degree line correspond to equal allocations between the two accounts and there-

fore involve no risk. The 45-degree line is the “full insurance” line. Second, we can interpret the

slope of a budget line as a price in the usual sense: if thex2-intercept is larger than thex1-intercept,

points in the account 2 are “cheaper” than those in the account 1.

Choi et al. (2014) implemented the task using the instrument of the CentERpanel, randomly

recruiting subjects from the entire panel sample in the Netherlands. Carvalho et al. (2016) admin-

istered the task using the GfK KnowledgePanel, a representative panel of the adult U.S. popula-

tion. Carvalho and Silverman (2019) used the Understanding America Study panel. The number

of subjects who completed the task in each study is 1,182 in CKMS, 1,119 in CMW, and 1,423 in

CS.

The survey instruments in these studies allowed the researchers to collect a wide variety of
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individual demographic and economic information from the respondents. The main demographic

information they obtained include gender, age, education level, household income, occupation,

and household composition.

The selection of 25 budget lines was independent across subjects in CKMS (i.e., the subjects

were given di�erent sets of budget lines), �xed in CMW (i.e., all subjects saw the same set of

budgets), and semi-randomized across subjects in CS (i.e., each subject drew one of the prepared

sets of 25 budgets).

4.2 Results

There are 3,724 subjects in three experiments, including �ve subjects who are “exactly” OEU

rational. About 76% of subjects never chose corners of the budget lines, and there is only two

percent of the entire sample who chose corners in more than half of the 25 questions. Finally, no

subjects chose corners in all 25 questions. Given these observations, our focus on risk aversion

does not seem to be too restrictive in these datasets.

We calculate e∗ for each individual subject.
8,9

The distributions of e∗ are displayed in Fig-

ure 5A.
10

The CKMS sample has a mean e∗ of 3.034, and a median of 2.729. The CMW subjects

have a mean of 2.480 and a median of 2.533. The CS sample has a mean of 2.490 and a median

of 2.081.
11

Recall that the smaller a subject’s e∗ is, the closer are her choices to OEU rationality.

It is, however, hard to exactly interpret the magnitude of e∗. We turn to this issue in Section 4.3.

Downward-sloping demand and e∗. Perturbations in beliefs, prices, or utility, seek to ac-

commodate a dataset so that it is OEU rationalizable. The accommodation can be seen as cor-

recting a mismatch of relative prices and marginal rates of substitution: recall our discussion

in the introduction. Another way to see the accommodation is through the relation between

prices and quantities. Our revealed preference axiom, e-PSAROEU, bounds certain deviations

from downward-sloping demand. The minimal e is therefore a measure of the kinds of deviations

from downward-sloping demand that are crucial to OEU rationality.

Figure 6 illustrates this idea. We calculate the correlation coe�cient between log(x2/x1)

and log(p2/p1) for each subject in the datasets as a measure for the degree of compliance with

8
By de�nition, �ve OEU rational subjects have e∗ = 0.

9
Earlier drafts of the paper (posted before summer 2019) reported log (1 + e∗), not e∗ itself.

10
The empirical CDF for the CMW data has several “steps” since all subjects saw the same set of 25 budget lines. For

example, there are 172 subjects with e∗ = 3.5925. The maximum adjustment required to make their data e-perturbed

OEU rational is on the budget line with prices (p1,p2) = (1, 0.2177).
11

Since e∗ depends on the design of the set(s) of budgets, comparing the values of e∗ across studies requires caution.
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Figure 5: Empirical CDFs of e∗. (A) All subjects. (B) The subsample of subjects with CCEI = 1. Notes:
The number of observations in each dataset is presented in parentheses. Table F.1 in the Online Appendix

presents summary statistics.

downward-sloping demand.
12

Roughly speaking, downward-sloping demand is captured by the

negative correlation between changes in quantities log(x2/x1) and changes in prices log(p2/p1).

The idea is that if a subject properly responds to price changes, then as log(x2/x1) becomes larger,

log(x2/x1) should become smaller. The correlation is close to zero if subjects do not respond to

price changes.

The top panels (A1-C1) of Figure 6 con�rm that e∗ and the correlation between prices and

quantities are closely related. This means that subjects with smaller e∗ tend to exhibit downward-

sloping demand, while those with larger e∗ are insensitive to price changes. Across all three

datasets, e∗ and downward-sloping demand are strongly and positively related.

The CCEI, on the other hand, is not clearly related to downward-sloping demand. As illus-

trated in the bottom panels (A2-C2) of Figure 6, the relation between CCEI and the degree of

downward-sloping demand is not monotonic, as indicated by U-shaped LOESS curves. Agents

who are closer to complying with utility maximization do not necessarily display a stronger neg-

ative correlation between prices and quantities.
13

The �nding is consistent with our comment about CCEI, e∗, and OEU rationality: CCEI mea-

sures the distance from general utility maximization, which is related to parallel shifts in budget

lines, while e∗ and OEU are about the slopes of the budget lines, and about a negative relation

between quantities and prices.

We should mention the practice by some authors, notably, Friedman et al. (2022), to evaluate

12
Note that log(x2/x1) is not de�ned at the corners. We thus adjust corner choices (less than 5% of all choices) by

a small constant, 0.1% of the budget in each choice, in calculation of the correlation coe�cient.

13
Note that CCEI and the degree of downward-sloping demand exhibit a monotonic relation if we restrict attention

to subjects who comply with downward-sloping demand in the sense of signi�cant negative correlation between

log(x2/x1) and log(p2/p1) (i.e., observations that locate left of the vertical dashed line in Figure 6).
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Figure 6: Downward-sloping demand and measures of rationality. Panels: (A) CKMS, (B) CMW, (C) CS.

Notes: The x-axis shows Spearman’s correlation coe�cient between log(x2/x1) and log(p2/p1) as a proxy

for the degree of downward-sloping demand. The vertical dashed line indicates the threshold below which

correlation is signi�cantly negative (one-sided, at the 1% level). Black curves represent LOESS smoothing

with 95% con�dence bands.

compliance with OEU by looking at the correlation between risk-neutral prices and quantities.

Our e∗ is related to that idea, and the empirical results presented in this section can be read as a

validation of the correlational approach. Friedman et al. (2022) use their approach to estimate a

parametric functional form, using experimental data in which they vary objective probabilities,

not just prices. Our approach is non-parametric, and focused on testing OEU itself, not estimating

any particular utility speci�cation.

First-order stochastic dominance and e∗. In the experiments we consider, choosing (x1,x2)

at prices (p1,p2) violates monotonicity with respect to �rst-order stochastic dominance (hereafter

FOSD-monotonicity) when either (i) p1 > p2 and x1 > x2 or (ii) p2 > p1 and x2 > x1. Since the

two states have the same objective probability in our datasets, choosing a greater payo� in the

more expensive state violates FOSD-monotonicity. Violations of FOSD-monotonicity are related

to downward-sloping demand, as they involve consuming more in the more expensive state.

Choices that violate FOSD-monotonicity are not uncommon in the data (on average, subjects

violated FOSD-monotonicity in six to nine budgets out of 25; see Online Appendix F.2).

Since OEU-rational choices must satisfy FOSD-monotonicity, e∗ = 0 implies no violations of

FOSD-monotonicity. Moreover, the value of e∗ is a good indicator of FOSD-monotonicity viola-
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Figure 7: Violation of FOSD-monotonicity and measures of rationality. Black curves represent LOESS

smoothing with 95% con�dence bands. Panels: (A) CKMS, (B) CMW, (C) CS.

tions. See the positive relationship between the fraction of FOSD-monotonicity violations and

e∗ in the top panels (A1-C1) of Figure 7: subjects who frequently made choices violating FOSD-

monotonicity tend to have larger e∗ compared to those with fewer such violations.

The relation between e∗ and violations of FOSD-monotonicity stands in sharp contrast with

CCEI. First, choices that violate FOSD-monotonicity can be consistent with GARP. Our data ex-

hibits subjects who pass GARP while making choices that violate FOSD-monotonicity (an empiri-

cal fact that was �rst pointed out by Choi et al., 2014). The bottom panels (A2-C2) of Figure 7 show

U-shaped relationship between the fraction of FOSD-monotonicity violations and CCEI. Subjects

who made frequent violations of FOSD-monotonicity do not necessarily have lower values of

CCEI.

Typical patterns of choices. We can gain some insights into the data by considering “typical”

patterns of choice. Figure 8 presents choice patterns of six selected subjects with CCEI = 1 and

varying degrees of e∗.
14

Panels A-F plot observed choices and panels a-f plot the relationship

between log(x2/x1) and log(p2/p1) associated with each choice pattern. As discussed above, pan-

els a-f would exhibit a strongly negative correlation (downward-sloping demand) for the subject

to be OEU rational.

Panel A presents a choice pattern that is “almost” consistent with OEU. The relation between

log(x2/x1) and log(p2/p1) �ts close to a line with negative slope. Panel B also shows a pattern

14
The patterns in Figure 8 are not an exhaustive list by any means. See Online Appendix F.8 for more examples.
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Figure 8: Choice patterns from six subjects in the CMW data with CCEI = 1 and varying e∗. (A-F) Observed

choices. (a-f) The relation between log(x2/x1) and log(p2/p1). Notes: Choices appear in shaded areas violate

FOSD-monotonicity. r indicates the correlation coe�cient and f indicates the fraction of choices violating

FOSD-monotonicity. In this data, median CCEI is 0.889, median EU-CCEI is 0.730, and median e∗ is 2.533.

F-GARP, EU-CCEI, cEU-CCEI are calculated with the GRID method of Polisson et al. (2020).
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that does not involve any FOSD-monotonicity violations but is not OEU rational due to small

deviations from the downward-sloping demand (see panel b). The pattern in panel C exhibits

larger deviations from the downward-sloping demand (panel c), which push its e∗ higher than

the previous two subjects.

The subject’s choices in panel D are close to the 45-degree line. At �rst glance, such choices

might seem to be rationalizable by a very risk-averse expected utility function. However, as

panel d shows, the subject’s choices deviate from the downward-sloping demand property, and

hence cannot be rationalized by any risk-averse expected utility function. Note that the “size” of

the deviation from the downward-sloping demand is small (see the scale of the y-axis in panel d).

One might be able to rationalize the choices made in panel D with some models of errors in

choices, but not with the types of errors captured by our model.
15

We will discuss other two

subjects (panels E and F) below.

Figure 8 also illustrates a simpli�ed way of assessing the size of e∗ when there are two states.

Under the price-perturbation interpretation, it measures how big of an adjustment of prices would

be needed to satisfy downward-sloping demand. Such adjustments will be represented as “hor-

izontal shifts” of points in the bottom panels of the �gure (since we �x the chosen bundle and

rotate the budget line), and the largest adjustment corresponds to e∗. A scatterplot of log(x2/x1)

versus log(p2/p1), as in panels a-f of Figure 8, works as a graphical tool to get a sense of whether a

subject’s e∗ is big or small. Online Appendix F.6 discusses this idea in more detail, and illustrates

e-price-perturbed OEU rationalization using the choice data presented in Figure 8.

Relationship between e∗, CCEI, and EU-CCEI. CCEI serves a di�erent purpose than e∗; it is

meant to capture deviations from general utility maximization, and not OEU. Nevertheless, it is

informative to understand the relationship between these measures in the data. We also comment

on the recent proposal by Polisson et al. (2020) of an adaptation of CCEI to test for OEU.

We observe, in Figure 5, that the distribution of e∗ among subjects whose CCEI is equal to

one (panel B) varies as much as in thw whole population (panel A). Many subjects have CCEI

equal to one, but their e∗’s can be far from zero. This means that consistency with general utility

maximization is not necessarily a good indication of consistency with OEU.

That said, the measures are clearly correlated. Figure 9, top panels (A1-C1), plot the relation

between CCEI and e∗. As we expect from their de�nitions (larger CCEI and smaller e∗ correspond

15
This is, in our opinion, a strength of our approach. We do not ex-post seek to invent a model of errors that might

rescue EU. Instead we have written down what we think are natural sources of errors and perturbation (random

utility, beliefs, and measurement errors). Our results deal with what can be rationalized when these sources of

errors, and only those, are used to explain the data. A general enough model of errors will, of course, render the

theory untestable.
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Figure 9: Correlation between e∗ and CCEI (top panels) and EU-CCEI of Polisson et al. (2020) (bottom

panels). Panels: (A) CKMS, (B) CMW, (C) CS.

to higher consistency), there is a negative and signi�cant relation between them (correlation

coe�cient: r = −0.18 for CKMS, r = −0.12 for CMW, r = −0.35 for CS, all p < 0.001). Of course,

subjects that are consistent with OEU as measured by e∗ (they have e∗ = 0) must exhibit CCEI = 1.

Notice that the variability of the CCEI widens as e∗ becomes larger. Obviously, subjects with

a small e∗ are close to being consistent with general utility maximization, and therefore have a

CCEI that is close to one. However, subjects with large e∗ seem to have dispersed values of CCEI.

Polisson et al. (2020) propose a version of CCEI meant to measure departures from EU using

their GRID method. We term this measure EU-CCEI. In contrast with our measure e∗, which as-

sumes risk aversion and is based on rotating budget lines, EU-CCEI does not impose risk aversion

and uses the same idea of shrinking budget lines as in standard CCEI. The bottom panels (A2-C2)

of Figure 9 exhibit the relationship between e∗ and EU-CCEI. It is clear that the relation between

e∗ and EU-CCEI is similar to that between e∗ and CCEI. The two measures are strongly correlated,

but they also provide di�erent conclusions for many subjects.

There are many subjects that EU-CCEI deems consistent with OEU, but have high levels of

e∗. This could be attributed to the more restrictive theory being tested by e∗. Subjects with EU-

CCEI close to one and large e∗ could simply be non-risk-averse OEU maximizers. Perhaps more

interesting is the existence of subjects that e∗ sees as relatively closer to OEU than others while

EU-CCEI does not, in the sense that their e∗ and EU-CCEI are below the �rst quartiles of the

empirical distributions (CKMS: three subjects; CMW: 28 subjects; CS: four subjects).

The same conclusions hold true for modi�ed CCEI indices for two additional models con-
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sidered in Polisson et al. (2020): stochastically monotone utility maximization and risk-averse

EU. We call these indices F-GARP and cEU-CCEI, respectively. Values of these indices are also

reported for the patterns in Figure 8. See Figures F.15-F.17 in the Online Appendix for pairwise

scatter plots of �ve indices (CCEI, F-GARP, EU-CCEI, cEU-CCEI, and e∗). The modi�ed CCEI

measures provide a more re�ned index for consistency for EU than CCEI, but di�erences with e∗

persist.

It is hard to investigate the di�erences between EU-CCEI and e∗ methodologically. EU-CCEI

does not specify a source of deviations from OEU, so we cannot say that one measure emphasizes

one source of errors and the other a di�erent source. Instead, we look at some of the patterns in

the data that gives rise to di�erences. An example of a choice pattern in which e∗ and EU-CCEI

di�er is provided by Figure 8, panel D. The subject in question exhibits CCEI = EU-CCEI = 1,

while e∗ is large and indicates a violation of OEU. (The pattern involves choices close to the 45-

degree line, but with a clear violation of downward-sloping demand, see panel d.) Panels E and F

exhibit subjects that e∗ says are close to (risk-averse) OEU, but EU-CCEI deems far from OEU. We

see in panels e and f that the conclusion using e∗ can be understood by the subjects’ compliance

with downward sloping demand. The subjects in panels E and F make a few FOSD-monotonicity

violations, which might explain the behavior of EU-CCEI, but that cannot be the end of the story

because the subject in panel D makes substantial FOSD-monotonicity violations and exhibits the

opposite behavior of e∗ and EU-CCEI. Finally, we should say that there are many other patterns

for which the conclusions of e∗ and EU-CCEI di�er (see Online Appendices F.3 and F.8).

With that said, we can still gain some understanding of the similarities and di�erences be-

tween e∗, EU-CCEI, and cEU-CCEI by focusing on a simple environment with two equally-likely

states, and two budget sets. The Online Appendix D.2 has a detailed development of this exercise.

In brief, while the relative location of the two choices plays a central role in determining the value

of e∗, EU-CCEI and cEU-CCEI also depend to some extent on how far apart they are to each other.

The way these measures treat and penalize violations of FOSD-monotonicity also di�ers.

Correlation with demographic characteristics. We investigate the correlation between our

measure of consistency with OEU, e∗, and various demographic variables available in the data.

The exercise is analogous to �ndings in Choi et al. (2014) that use CCEI.
16

We �nd that younger subjects, those who have high cognitive abilities, and those who are

working, are closer to being consistent with OEU than older, low ability, or non-working, subjects.

For some of the three experiments we also �nd that highly educated, high-income subjects, and

males, are closer to OEU. Figure 10 summarizes the mean e∗ (along with the standard error of

16
We used Welch’s t-test to to evaluate di�erences between demographic groups.
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Figure 10: Correlation between e∗ and demographic variables. Notes: Dots represent mean e∗ and bars

represent standard errors of means.

mean) across several socioeconomic categories. We use the same categorization as in Choi et al.

(2014) to compare our results with their Figure 3.

We observe statistically signi�cant (at the 5% level) gender di�erences in CS (t = −3.28,

df = 1384.5, p = 0.001) but not in CKMS (t = −0.37, df = 1162.8, p = 0.708) and CMW

(t = −1.46, df = 717.4, p = 0.144). Male subjects were on average closer to OEU rationality than

female subjects in the CS sample (panel A).

We �nd signi�cant e�ects of age in all three datasets. Panel B shows that younger subjects are

on average closer to OEU rationality than older subjects (the comparison between age groups 16-

34 and 65+ reveals a statistically signi�cant di�erence in all three datasets; all t-tests give p <

0.001).

We observe weak e�ects of education on e∗ (panel C).
17

Subjects with higher education are on

17
The low, medium, and high education levels correspond to primary or prevocational secondary education, pre-

university secondary education or senior vocational training, and vocational college or university education, respec-

tively.
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average closer to OEU than those with lower education in CKMS (t = 3.11, df = 826.9, p = 0.002),

but the di�erence is not signi�cant in the CMW and CS (t = 1.48, df = 121.8, p = 0.140 in CMW;

t = 1.08, df = 47.2, p = 0.286 in CS).

Panel D shows that subjects who were working at the time of the survey are on average closer

to OEU than those who were not (t = 2.03, df = 865.1, p = 0.043 in CKMS; t = 2.19, df = 471.1,

p = 0.029 in CMW; t = 2.79, df = 973.6, p = 0.005 in CS).

In panels E1 and E2, we classify subjects according to their Cognitive Re�ection Test score

(CRT; Frederick, 2005) or average reaction times in the numerical Stroop task.
18

The average e∗

for those who correctly answered two questions or more of the CRT is lower than the average for

those who answered at most one question (t = −3.16, df = 929.4, p = 0.002). Subjects with lower

response times in the numerical Stroop task have signi�cantly lower e∗ (t = −2.96, df = 1104.1,

p = 0.003).

One of the key �ndings in Choi et al. (2014) is that consistency with utility maximization as

measured by CCEI correlates with household wealth. When we look at the relation between e∗

and household income, there is a negative trend but the di�erences across income brackets are

not statistically signi�cant (bracket “0-2.5k” vs. “5k+”, t = 1.02, df = 527.5, p = 0.309; panel F1).

Panel F2 presents a similar result between subjects who earned more than 20 thousand USD

annually or not in the CMW sample (t = 0.75, df = 1012, p = 0.455). When we compare poor

households (annual income less than 20 thousand USD) and wealthy households (annual income

more than 100 thousand USD) from the CS sample, average e∗ is signi�cantly smaller for the latter

sample (t = 2.55, df = 853.8, p = 0.011; panel F3).

Robustness of the results. The measure e∗ is a bound that has to hold across all observations

and states (see conditions (4), (5), and (6) in the de�nitions of e-perturbed OEU). One may wonder

how sensitive e∗ is to a small number of “bad” choices. Online Appendix F.4 presents two robust-

ness checks. In the �rst robustness check, we recalculate e∗ using subsets of observed choices

after dropping one or two “critical mistakes”. More precisely, for each subject, we calculate e∗ for

all combinations of 25−m (m = 1, 2) choices and pick the smallest e∗ among them. In the second

robustness check, we calculate the “average” perturbation necessary to rationalize the data to

mitigate the e�ect of extreme mistakes. These alternative ways of calculating e∗ do not change

the general pattern of correlation between e∗ and CCEI or e∗ and demographic variables. The

main empirical results are robust to the presence of a small number of bad choices.

18
CRT consists of three questions, all of which have an intuitive and spontaneous, but incorrect, answers, and a

deliberative and correct answer. In the numerical Stroop task, subjects are presented with a number, such as 888, and

are asked to identify the number of times the digit is repeated (in this example the answer is “3”, while an “intuitive”

response is “8”). It has been shown that response times in this task capture the subject’s cognitive control ability.
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4.3 Minimum Perturbation Test

Our discussion so far has sidestepped one issue: How are we to interpret the absolute magnitude

of e∗? When can we say that e∗ is large enough to “reject” consistency with OEU rationality allowing
perturbations? To answer this question, we present a statistical test of the hypothesis that an agent

is OEU rational. The test needs some assumptions, but it gives us a threshold level (a critical value)

for e∗. Any value of e∗ that exceeds the threshold indicates inconsistency with perturbed OEU at

some given statistical signi�cance level.
19

Our approach is inspired by the methodology laid out in Varian (1985), Echenique et al. (2011),

and Echenique et al. (2016). The overall idea is to adopt as the null hypothesis that the data was

produced by an agent who is OEU rational, but who may misperceive prices (or, alternatively, who

perceives prices correctly, but the data includes prices with measurement error). In other words,

we pursue the price-perturbation interpretation of e in Section 3.2. Then we seek to calculate the

probability of observing the magnitude of noise that would be needed to reconcile the observed

data with the null hypothesis. This probability is the basis for a statistical test: it allows us to

formulate critical regions, and p-values for the null hypothesis that the agent’s behavior is OEU

rational.

Now we should explain two related issues. The �rst is that the whole exercise rests on making

an assumption regarding the distribution of noise ε , and in particular its variance. The second

issue is why we need to adopt the price perturbation interpretation of e . We work with price

perturbations because it allows us to use the induced variability in price to get a handle on the

assumptions we need to make on perturbed prices. In particular, it allows us to make an informed

decision regarding which variance to assume for the distribution of noise.

More formally, letDobs = (p
k ,xk)K

k=1
denote an observed dataset andDtrue = (p̃

k ,xk)K
k=1

denote

the “true” (but unobserved) dataset. Let us suppose that observed prices and the “true” prices are

related in the following way: p̃ks = p
k
s ε̃

k
s , where ε̃ks > 0 for all s ∈ S and k ∈ K . We call (p̃k ,xk)K

k=1

the “true” dataset and p̃k the “true” prices because we can interpret p̃k as the (misperceived) prices

the agent had in mind when she made a decision, or alternatively we can interpret pk as prices

measured with error.

19
Another way to assess the magnitude of observed e∗ is to simulate choice data assuming some behavioral model

and calculate e∗ on the simulated dataset. In Online Appendix F.5, we compare e∗ from real choice data against two

sets of simulated choice data. We observe that choices made by subjects in the experiments are closer to OEU than

synthetic subjects who choose uniformly randomly on budget lines. We also observe that synthetic subjects who

choose randomly while respecting FOSD-monotonicity have e∗ that are substantially smaller than real subjects in

the experiments.
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The null hypothesis we consider is

H0 : The “true” dataset Dtrue = (p̃
k ,xk)Kk=1

is OEU rational.

If we could (somehow) observe Dtrue, we could compute

E = max

k∈K,s,t∈S

ε̃ks

ε̃kt

and reject the null hypothesis if E is “too large” in the sense that it exceeds certain threshold.

Now, we do not know Dtrue, but we can show that e∗, which we can compute from Dobs, provides

a lower bound on E (see Online Appendix E). In consequence, we use e∗ as our test statistic.

Now, we need to compare e∗ against the distribution of E under the null hypothesis. What do

we assume regarding the variance of ε? To address this question, we take seriously the idea that

the agent mistakes perturbed prices for actual prices, and we would like the misperception to be

plausible. So it should not be obvious to the agent that one distribution of prices is signi�cantly

di�erent from the other. To operationalize this idea, we imagine an agent who conducts a statis-

tical test for the variance of prices. If the true variance of p is σ 2

0
and the variance of p̃ is σ 2

1
> σ 2

0
,

then the agent could conduct a test for the null of σ 2 = σ 2

0
against the alternative of σ 2 = σ 2

1
. We

want the variances to be close enough that the agent might reasonably get inconclusive results

from such a test (i.e., the agent may reasonably mistake true prices p with perturbed prices p̃, as

we assumed). Speci�cally, we assume the sum of probabilities of type I and type II errors in this test,
ηI + ηII , is relatively large.20

All together, our statistical test for OEU rationality works as follows: (i) we compute e∗, the

relevant test statistic; (ii) we calculate σ 2

0
from observed prices; (iii) we set the pair (ηI ,ηII ) to

obtain σ 2

1
, which in turn gives the variance of ε ; (iv) we simulate the distribution of E, and �nd

the critical valueCα given the signi�cance level α ; and (v) we reject the null hypothesis that Dtrue

is OEU rational if e∗ > Cα . Additional details are presented in Online Appendix E.

The results are summarized in Figure 11. Consider, for example, our results for CKMS. The

outermost numbers assume thatηI+ηII = 0.7. For such numbers, the rejection rates range from 5%

to 30%. This means that if prices p and p̃ are close enough so that the agent may misperceive the

prices and make type I and type II errors with probability 70%, then we can reject the hypothesis

that the agent is an OEU maximizer at most 30% of the cases.

Overall, it is fair to say that rejection rates of the hypothesis that the decision maker is an

OEU maximizer are modest. Notice also that smaller values of ηI + ηII corresponds to smaller

20
The problem of variance is pervasive in statistical implementations of revealed preference tests. See Varian

(1985), Echenique et al. (2011), and Echenique et al. (2016), for example. The use of the sum of type I and type II

errors to calibrate a variance, is new to the present paper.
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Figure 11: Rejection rates under each combination of type I and type II error probabilities (ηI ,ηII ). Panels:

(A) CKMS, (B) CMW, (C) CS.

rejection rates. This is because when values of ηI + ηII are smaller (i.e., the decision maker does

not misperceive prices much), the di�erence between p and p̃ should be large, which corresponds

to larger variances of ε . Larger variance, in turn, leads to smaller rejection rates. The �gure also

illustrates that the conclusions of the test are very sensitive to what one assumes about variances,

through the assumptions about ηI and ηII . But if we look at the largest rejection rates, for the

largest values of ηI +ηII , we get 30% for CKMS, 11% for CMW, and 21% for CS. Hence, while many

subjects in the experiments are inconsistent with OEU, for most of these subjects, our statistical

tests would attribute such inconsistency to misperception of prices and do not reject that the

subjects are OEU maximizers.

5 Conclusion

We present a measure of deviations from expected utility theory, called minimal e (or e∗), that is

based on a revealed-preference characterization of the “perturbed” version of the model.

We start from an observation that the empirical content of EU is captured by the relation

between prices and marginal rates of substitution. We measure the deviations from EU by the
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smallest amount of perturbations one needs to add in order to get the “right” relation between

prices and marginal rates of substitution. There are three components of the EU model, beliefs,

prices, and utilities, which we can perturb, but we can interpret the measure in any of the ways

(Theorem 1).

We apply our method to data from three large-scale experiments and �nd that the measure

delivers additional insights on datasets that had been analyzed with CCEI, a measure of consis-

tency with general utility maximization. Our measure can be used as an additional toolkit for

data analysis in empirical studies employing choices from linear budgets.

Appendix A Proofs of Theorems 1 and 2

A.1 Proof of Theorem 1

First we prove a lemma that implies Theorem 1, and is useful for the su�ciency part of Theorem 2.

The lemma provides “Afriat inequalities” for the problem at hand.

Lemma 1. Given e ∈ R+, and let (xk ,pk)Kk=1
be a dataset. The following statements are equivalent.

(a) (xk ,pk)K
k=1

is e-belief-perturbed OEU rational.

(b) There are strictly positive numbers vks , λ
k , µks , for s ∈ S and k ∈ K , such that

µksv
k
s = λ

kpks , and xks > xk
′

s ′ =⇒ vks ≤ v
k ′

s ′ , (8)

and for all k ∈ K and s, t ∈ S ,

1

1 + e
≤
µks /µ

k
t

µ∗s /µ
∗
t

≤ 1 + e . (9)

(c) (xk ,pk)K
k=1

is e-price-perturbed OEU rational.

(d) There are strictly positive numbers v̂ks , ˆλk , and εks for s ∈ S and k ∈ K , such that

µ∗s v̂
k
s =

ˆλkεks p
k
s , and xks > xk

′

s ′ =⇒ v̂ks ≤ v̂
k ′

s ′ ,

and for all k ∈ K and s, t ∈ S ,
1

1 + e
≤
εks

εkt
≤ 1 + e .

(e) (xk ,pk)K
k=1

is e-utility-perturbed OEU rational.
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(f) There are strictly positive numbers v̂ks , ˆλk , and ε̂ks for s ∈ S and k ∈ K , such that

µ∗s ε̂
k
s v̂

k
s =

ˆλkpks , and xks > xk
′

s ′ =⇒ v̂ks ≤ v̂
k ′

s ′ ,

and for all k ∈ K and s, t ∈ S ,
1

1 + e
≤
ε̂ks

ε̂kt
≤ 1 + e .

Proof. The equivalence between (a) and (b), the equivalence between (c) and (d), and the equiva-

lence between (e) and (f) follow from arguments in Echenique and Saito (2015). The equivalence

between (d) and (f) with εks = 1/ε̂ks for each k ∈ K and s ∈ S is straightforward. Thus, to show

the result, it su�ces to show that (b) and (d) are equivalent.

To show that (d) implies (b), de�ne v = v̂ and µks =
µ∗s
εks
/

(∑
s∈S

µ∗s
εks

)
for each k ∈ K and s ∈ S

and λk = ˆλk/
(∑

s∈S
µ∗s
εks

)
for each k ∈ K . Then, µk ∈ ∆++(S). Since µ∗s v̂

k
s =

ˆλkεks p
k
s , we have

µksv
k
s = λ

kpks . Moreover, for each k ∈ K and s, t ∈ S ,
εks
εkt
=

µks /µ
k
t

µ∗s /µ
∗
t
. Hence,

1

1+e ≤
εks
εkt
≤ 1 + e .

To show that (b) implies (d), for all s ∈ S de�ne v̂ = v and for all k ∈ K ,
ˆλk = λk . For all k ∈ K

and s ∈ S , de�ne εks =
µ∗s
µks

. For each k ∈ K and s ∈ S , since µksu
k
s = λ

kpks , we have µ∗sv
k
s =

ˆλkεks p
k
s .

Finally, for each k ∈ K and s, t ∈ S ,
εks
εkt
=

µ∗s /µ
k
s

µ∗t /µ
k
t
=

µkt /µ
k
s

µ∗t /µ
∗
s
. Therefore, we obtain

1

1+e ≤
εks
εkt
≤ 1+e . �

A.2 Proof of the Necessity Direction of Theorem 2

Lemma 2. Given e ∈ R+, if a dataset is e-belief-perturbed OEU rational, then the dataset satis�es
e-PSAROEU.

Proof. Fix any sequence (xkisi ,x
k ′i
s ′i
)ni=1
≡ σ of pairs that satis�es conditions (i) and (ii) in De�nition 7.

By Lemma 1, there exist vkisi ,v
k ′i
s ′i
, λki , λk

′
i , µkisi , µ

k ′i
s ′i

such that v
k ′i
s ′i
≥ vkisi and vkisi =

µ∗si

µ
ki
si

λkiρkisi , and

v
k ′i
s ′i
=

µ∗
s ′i

µ
k ′i
s ′i

λk
′
i ρ

k ′i
s ′i

. Thus, we have

1 ≥

n∏
i=1

λki (µ
k ′i
s ′i
/µ∗

s ′i
)ρkisi

λk
′
i (µkisi /µ

∗
si )ρ

k ′i
s ′i

=

n∏
i=1

µ
k ′i
s ′i
/µ∗

s ′i

µkisi /µ
∗
si

n∏
i=1

ρkisi

ρ
k ′i
s ′i

,

where the second equality holds by condition (ii). Hence,

n∏
i=1

ρkisi

ρ
k ′i
s ′i

≤

n∏
i=1

µkisi /µ
∗
si

µ
k ′i
s ′i
/µ∗

s ′i

.

36



In the following, we evaluate the right hand side. For each (k, s), we �rst cancel out all the

terms µks that can be canceled out. Then, the number of µks ’s that remain in the numerator is

d(σ ,k, s), as in De�nition 8. Since the number of terms in the numerator and the denominator

must be the same, the number of remaining fractions is m(σ ) ≡
∑

s∈S

∑
k∈K :d(σ ,k,s)>0

d(σ ,k, s). So

by relabeling the index i to j if necessary, we obtain

n∏
i=1

µkisi /µ
∗
si

µ
k ′i
s ′i
/µ∗

s ′i

=

m(σ )∏
j=1

µ
kj
sj /µ

∗
sj

µ
k ′j
s ′j
/µ∗

s ′j

.

Consider the corresponding sequence (x
kj
sj ,x

k ′j
s ′j
)
m(σ )
j=1

. Since the sequence is obtained by can-

celing out xks from the �rst element and the second element of the pairs, and since the original

sequence (xkisi ,x
k ′i
s ′i
)ni=1

satis�es condition (ii), it follows that (x
kj
sj ,x

k ′j
s ′j
)
m(σ )
j=1

satis�es condition (ii).

By condition (ii), we can assume without loss of generality that kj = k
′
j for each j. Therefore,

by the condition on the perturbation,

m(σ )∏
j=1

µ
kj
sj /µ

∗
sj

µ
k ′j
s ′j
/µ∗

s ′j

≤ (1 + e)m(σ ).

In conclusion, we obtain that

∏n
i=1
(ρkisi /ρ

k ′i
s ′i
) ≤ (1 + e)m(σ ). �

A.3 Proof of the Su�ciency Direction of Theorem 2

We need three lemmas to prove the su�ciency direction. The idea behind the argument is the

same as in Echenique and Saito (2015). We know from Lemma 1 that it su�ces to �nd a solution to

the relevant system of Afriat inequalities. We take logarithms to linearize the Afriat inequalities

in Lemma 1. Then we set up the problem to �nd a solution to the system of linear inequalities.

The �rst lemma, Lemma 3, shows that e-PSAROEU is su�cient for e-belief-perturbed OEU

rationality under the assumption that the logarithms of the prices are rational numbers. The

assumption of rational logarithms comes from our use of a version of the theorem of the alter-

native (see Lemma 12 in Online Appendix B.4): when there is no solution to the linearized Afriat

inequalities, a rational solution to the dual system of inequalities exists. Then we construct a

violation of e-PSAROEU from the given solution to the dual.

The second lemma, Lemma 4, establishes that we can approximate any dataset satisfying

e-PSAROEU with a dataset for which the logarithms of prices are rational, and for which e-

PSAROEU is satis�ed.
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The last lemma, Lemma 5, establishes the result by using another version of the theorem of

the alternative, stated as Lemma 11.

The rest of the section is devoted to the statement of these lemmas.

Lemma 3. Given e ∈ R+, let a dataset (xk ,pk)kk=1
satisfy e-PSAROEU. Suppose that log(pks ) ∈ Q for

all k ∈ K and s ∈ S , log(µ∗s ) ∈ Q for all s ∈ S , and log(1 + e) ∈ Q. Then there are numbers vks , λ
k ,

µks for s ∈ S and k ∈ K satisfying (8) and (9) in Lemma 1.

Lemma 4. Given e ∈ R+, let a dataset (xk ,pk)k
k=1

satisfy e-PSAROEU with respect to µ∗. Then for
all positive numbers ε , there exist a positive real numbers e′ ∈ [e, e + ε], µ′s ∈ [µ

∗
s − ε, µ

∗
s + ε], and

qks ∈ [p
k
s − ε,p

k
s ] for all s ∈ S and k ∈ K such that logqks ∈ Q for all s ∈ S and k ∈ K , log(µ′s) ∈ Q

for all s ∈ S , and log(1 + e′) ∈ Q, µ′ ∈ ∆++(S), and the dataset (xk ,qk)kk=1
satisfy e′-PSAROEU with

respect to µ′.

Lemma 5. Given e ∈ R+, let a dataset (xk ,pk)kk=1
satisfy e-PSAROEU with respect to µ. Then there

are numbers vks , λ
k , µks for s ∈ S and k ∈ K satisfying (8) and (9) in Lemma 1.

A.3.1 Proof of Lemma 3

The proof is similar to the proof of the main result in Echenique and Saito (2015), which corre-

sponds to the case e = 0. By log-linearizing the equation in system (8) and the inequality (9) in

Lemma 1, we have for all s ∈ S and k ∈ K , such that

log µks + logvks = log λk + logpks , (10)

xks > xk
′

s ′ =⇒ logvks ≤ logvk
′

s ′ , (11)

and for all k ∈ K and s, t ∈ S ,

− log(1 + e) + log µ∗s − log µ∗t ≤ log µks − log µkt ≤ log(1 + e) + log µ∗s − log µ∗t . (12)

We are going to write the system of inequalities (10)-(12) in matrix form, following Echenique

and Saito (2015) with some modi�cations.

Let A be a matrix with K × S rows and 2(K × S) + K + 1 columns, de�ned as follows: We

have one row for every pair (k, s), two columns for every pair (k, s), one columns for each k , and

one last column. In the row corresponding to (k, s), the matrix has zeroes everywhere with the

following exceptions: it has 1’s in columns for (k, s); it has a −1 in the column for k ; it has − logpks
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in the very last column. Matrix A looks as follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...
...
...

...
...
...
...

...
...

...

(k,s) · · · 1 0 0 0 · · · · · · 1 0 0 0 · · · · · · −1 0 · · · − logpks
(k,t) · · · 0 1 0 0 · · · · · · 0 1 0 0 · · · · · · −1 0 · · · − logpkt
(l ,s) · · · 0 0 1 0 · · · · · · 0 0 1 0 · · · · · · 0 −1 · · · − logpls
(l ,t) · · · 0 0 0 1 · · · · · · 0 0 0 1 · · · · · · 0 −1 · · · − logplt

...
...
...
...

...
...
...
...

...
...

...


.

Next, we write the system of inequalities (11) and (12) in a matrix form. There is one row in

matrix B for each pair (k, s) and (k′, s′) for which xks > xk
′

s ′ . In the row corresponding to xks > xk
′

s ′ ,

we have zeroes everywhere with the exception of a −1 in the column for (k, s) and a 1 in the

column for (k′, s′). Matrix B has additional rows, that capture the system of inequalities (12), as

follows:



··· vks vkt vls vlt ··· ··· µks µkt µls µlt ··· ··· λk λl ··· p

...
...
...
...

...
...
...
...

...
...

...

· · · 0 0 0 0 · · · · · · 1 −1 0 0 · · · · · · 0 0 · · · log(1 + e) − log µ∗s + log µ∗t
· · · 0 0 0 0 · · · · · · −1 1 0 0 · · · · · · 0 0 · · · log(1 + e) + log µ∗s − log µ∗t
· · · 0 0 0 0 · · · · · · 0 0 −1 1 · · · · · · 0 0 · · · log(1 + e) + log µ∗s − log µ∗t
· · · 0 0 0 0 · · · · · · 0 0 1 −1 · · · · · · 0 0 · · · log(1 + e) − log µ∗s + log µ∗t

...
...
...
...

...
...
...
...

...
...

...


.

Finally, we have a matrix E which has a single row and has zeroes everywhere except for 1 in

the last column.

To sum up, there is a solution to the system (10)-(12) if and only if there is a vector u ∈

R2(K×S)+K+1
that solves the system of equations and linear inequalities

S1 :


A · u = 0,

B · u ≥ 0,

E · u > 0.

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column of A

and B. Under the hypotheses of the lemma we are proving, the last column consists of rational

numbers. By Motzkin’s theorem, then, there is such a solution u to S1 if and only if there is no

rational vector (θ ,η,π ) that solves the system of equations and linear inequalities

S2 :


θ · A + η · B + π · E = 0,

η ≥ 0,

π > 0.

39



In the following, we shall prove that the non-existence of a solution u implies that the dataset

must violate e-PSAROEU. Suppose then that there is no solution u and let (θ ,η,π ) be a rational

vector as above, solving system S2.

The outline of the rest of the proof is similar to the proof of Echenique and Saito (2015). Since

(θ ,η,π ) are rational vectors, by multiplying a large enough integer, we can make the vectors

integers. Then we transform the matrices A and B using θ and η. (i) If θr > 0, then creat θr copies

of the r th row; (ii) omitting row r when θr = 0; and (iii) if θr < 0, then θr copies of the r th row

multiplied by −1.

Similarly, we create a new matrix by including the same columns as B and ηr copies of each

row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r ).

By using the transformed matrices and the fact that θ ·A+η · B + π · E = 0 and η ≥ 0, we can

prove the following claims:

Claim. There exists a sequence (xkisi ,x
k ′i
s ′i
)n
∗

i=1
≡ σ of pairs that satis�es conditions (i) and (ii) in

De�nition 7.

Proof. We can construct a sequence (xkisi ,x
k ′i
s ′i
)n
∗

i=1
in a similar way to the proof of Lemma 11 of

Echenique and Saito (2015). By construction, the sequence satis�es condition (i) that xkisi > x
k ′i
s ′i

for all i .

In the following, we show that the sequence satis�es condition (ii) that each k appears as ki

the same number of times it appears ask′i . Letn(xks ) ≡ #{i | xks = xkisi } andn′(xks ) ≡ #{i | xks = x
k ′i
s ′i
}.

It su�ces to show that for each k ∈ K ,

∑
s∈S

[
n(xks ) − n

′(xks )
]
= 0.

Recall our construction of the matrix B. We have a constraint for each triple (k, s, t)with s < t .

Denote the weight on the rows capturing
µks /µ

k
t

µ∗s /µ
∗
t
≤ 1 + e by η(k, s, t) and 1 + e ≤

µks /µ
k
t

µ∗s /µ
∗
t

by η(k, t , s).

For each k ∈ K and s ∈ S , in the column corresponding to µks in matrix A, remember that we

have 1 if we have xks = xkisi for some i and −1 if we have xks = x
k ′i
s ′i

for some i . This is because a row

in A must have 1 (−1) in the column corresponding to vks if and only if it has 1 (−1, respectively)

in the column corresponding to µks . By summing over the column corresponding to µks , we have

n(xks ) − n
′(xks ).

Now we consider matrixB. In the column corresponding to µks , we have 1 in the row multiplied

by η(k, t , s) and−1 in the row multiplied by η(k, s, t). By summing over the column corresponding

to µks , we also have −
∑

t,s η(k, s, t) +
∑

t,s η(k, t , s).

For each k ∈ K and s ∈ S , the column corresponding to µks of matrices A and B must sum up

to zero; so we have

n(xks ) − n
′(xks ) +

∑
t,s

[−η(k, s, t) + η(k, t , s)] = 0. (13)

Hence for each k ∈ K ,

∑
s∈S

[
n(xks ) − n

′(xks )
]
= 0. �
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Claim.
∏n∗

i=1
(ρkisi /ρ

k ′i
s ′i
) > (1 + e)m(σ

∗)
.

Proof. By (13), So for each s ∈ S∑
k∈K

∑
s∈S

∑
t,s

[η(k, s, t) − η(k, t , s)] log µ∗s =
∑
k∈K

∑
s∈S

[
n(xks ) − n

′(xks )
]

log µ∗s =
n∗∑
i=1

log

µ∗si
µ∗
s ′i

,

where the last equality holds by the de�nition of n and n′. Moreover, since d(σ ∗,k, s) = n(xks ) −

n′(xks ) =
∑

t,s [η(k, s, t) − η(k, t , s)] ≤
∑

t,s η(k, s, t), we have

m(σ ∗) ≡
∑
s∈S

∑
k∈K :d(σ ∗,k,s)>0

d(σ ∗,k, s) =
∑
s∈S

∑
k∈K

min{n(xks ) − n
′(xks ), 0} ≤

∑
s∈S

∑
k∈K

∑
t,s

η(k, s, t).

By the equality and the inequality above and by the fact that the last column must sum up to zero

and E has one at the last column, we have

0 >

n∗∑
i=1

log

p
k ′i
s ′i

pkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t,s

η(k, s, t) +
∑
k∈K

∑
s∈S

∑
t,s

(η(k, s, t) − η(k, t , s)) log µ∗s

=

n∗∑
i=1

log

p
k ′i
s ′i

pkisi
−

n∗∑
i=1

log

µ∗si
µ∗
s ′i

+ log(1 + e)
∑
k∈K

∑
s∈S

∑
t,s

η(k, s, t)

=

n∗∑
i=1

log

ρ
k ′i
s ′i

ρkisi
+ log(1 + e)

∑
k∈K

∑
s∈S

∑
t,s

η(k, s, t) ≥
n∗∑
i=1

log

ρ
k ′i
s ′i

ρkisi
+ log(1 + e)m(σ ∗).

That is,

∑n∗

i=1
log(ρkisi /ρ

k ′i
s ′i
) > m(σ ∗) log(1 + e). This is a contradiction. �

A.3.2 Proof of Lemma 4

Let X = {xks | k ∈ K, s ∈ S}. Consider the set of sequences that satisfy conditions (i) and (ii) in

De�nition 7:

Σ =

{
(xkisi ,x

k ′i
s ′i
)ni=1
⊂ X2

����� (xkisi ,xk
′
i

s ′i
)ni=1

satis�es conditions (i) and (ii)

in De�nition 7 for some n

}
.

For each sequence σ ∈ Σ, we de�ne a vector tσ ∈ NK2S2

. For each pair (xkisi ,x
k ′i
s ′i
), we shall identify

the pair with ((ki , si), (k
′
i , s
′
i )). Let tσ ((k, s), (k

′, s′)) be the number of times that the pair (xks ,x
k ′

s ′ )

appears in the sequence σ . One can then describe the satisfaction of e-PSAROEU by means of the

vectors tσ . Observe that t depends only on (xk)K
k=1

in the dataset (xk ,pk)K
k=1
. It does not depend

on prices.
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For each ((k, s), (k′, s′)) such that xks > xk
′

s ′ , de�ne δ ((k, s), (k′, s′)) = log(pks /p
k ′

s ′ ). And de�ne

δ ((k, s), (k′, s′)) = 0 when xks ≤ xk
′

s ′ . Then, δ is a K2S2
-dimensional real-valued vector. If σ =

(xkisi ,x
k ′i
s ′i
)ni=1

, then

δ · tσ =
∑

((k,s),(k ′,s ′))∈(KS)2

δ ((k, s), (k′, s′))tσ ((k, s), (k
′, s′)) = log

©­«
n∏
i=1

ρkisi

ρ
k ′i
s ′i

ª®®¬ .
So the dataset satis�es e-PSAROEU with respect to µ if and only if δ · tσ ≤ m(σ ) log(1 + e) for all

σ ∈ Σ.

Enumerate the elements in X in increasing order: y1 < y2 < · · · < yN , and �x an arbitrary

ξ ∈ (0, 1). We shall construct by induction a sequence {(εks (n))}
N
n=1

, where εks (n) is de�ned for all

(k, s) with xks = yn.

By the denseness of the rational numbers, and the continuity of the exponential function, for

each (k, s) such that xks = y1, there exists a positive number εks (1) such that log(ρks ε
k
s (1)) ∈ Q and

ξ < εks (1) < 1. Let ε(1) = min{εks (1) | x
k
s = y1}.

In second place, for each (k, s) such that xks = y2, there exists a positive εks (2) such that

log(ρks ε
k
s (2)) ∈ Q and ξ < εks (2) < ε(1). Let ε(2) = min{εks (2) | x

k
s = y2}.

In third place, and reasoning by induction, suppose that ε(n) has been de�ned and that ξ <

ε(n). For each (k, s) such that xks = yn+1, let εks (n + 1) > 0 be such that log(ρks ε
k
s (n + 1)) ∈ Q, and

ξ < εks (n + 1) < ε(n). Let ε(n + 1) = min{εks (n + 1) | xks = yn}.

This de�nes the sequence (εks (n)) by induction. Note that εks (n+1)/ε(n) < 1 for all n. Let
¯ξ < 1

be such that εks (n + 1)/ε(n) < ¯ξ .

For each k ∈ K and s ∈ S , let ρ̂ks = ρ
k
s ε

k
s (n), where n is such that xks = yn. Choose µ′ ∈ ∆++(S)

such that for all s ∈ S log µ′s ∈ Q and µ′s ∈ [
¯ξ µs , µs/ ¯ξ ] for all s ∈ S . Such µ′ exists by the denseness

of the rational numbers. Now for each k ∈ K and s ∈ S , de�ne

qks =
ρ̂ks
µ′s
. (14)

Then, logqks = log ρ̂ks − log µ′s ∈ Q.

We claim that the dataset (xk ,qk)K
k=1

satis�es e′-PSAROEU with respect to µ′. Let δ ∗ be de�ned

from (qk)K
k=1

in the same manner as δ was de�ned from (ρk)K
k=1

.

For each pair ((k, s), (k′, s′)) with xks > xk
′

s ′ , if n andm are such that xks = yn and xk
′

s ′ = ym, then

n > m. By de�nition of ε ,
εks (n)

εk
′

s ′ (m)
<
εks (n)

ε(m)
< ¯ξ < 1.
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Hence,

δ ∗((k, s), (k′, s′)) = log

ρks ε
k
s (n)

ρk
′

s ′ ε
k ′
s ′ (m)

< log

ρks

ρk
′

s ′

+ log
¯ξ < log

ρks

ρk
′

s ′

= δ ((k, s), (k′, s′)).

Now, we choose e′ such that e′ ≥ e and log(1 + e′) ∈ Q.

Thus, for all σ ∈ Σ, δ ∗ · tσ ≤ δ · tσ ≤ m(σ ) log(1+e) ≤ m(σ ) log(1+e′) as t· ≥ 0 and the dataset

(xk ,pk)K
k=1

satis�es e-PSAROEU with respect to µ.

Thus the dataset (xk ,qk)K
k=1

satis�es e′-PSAROEU with respect to µ′. Finally, note that ξ <

εks (n) < 1 for all n and each k ∈ K, s ∈ S . So that by choosing ξ close enough to 1, we can take ρ̂

to be as close to ρ as desired. By the de�nition, we also can take µ′ to be as close to µ as desired.

Consequently, by (14), we can take (qk)K
k=1

to be as close to (pk)K
k=1

as desired. We also can take

e′ to be as close to e as desired.

A.3.3 Proof of Lemma 5

We use the following notational convention: For a matrix D with 2(K × S) + K + 1 columns,

write D1 for the submatrix of D corresponding to the �rst K ×S columns; let D2 be the submatrix

corresponding to the following K × S columns; D3 correspond to the next K columns; and D4 to

the last column. Thus, D = [D1 D2 D3 D4 ].

Consider the system comprised by (10), (11), and (12) in the proof of Lemma 3. Let A, B, and

E be constructed from the dataset as in the proof of Lemma 3. The di�erence with respect to

Lemma 3 is that now the entries of A4 and B4 may not be rational. Note that the entries of E, B,

and Ai , i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised by (10), (11),

and (12). Then, by the argument in the proof of Lemma 3 there is no solution to system S1.

Lemma 11 (in Appendix B.4) with F = R implies that there is a real vector (θ ,η,π ) such that

θ ·A+η ·B+π ·E = 0 and η ≥ 0,π > 0. Recall that E4 = 1, so we obtain that θ ·A4+η ·B4+π = 0.

Consider (qk)K
k=1

, µ′, and e′ be such that the dataset (xk ,qk)K
k=1

satis�es e′-PSAROEU with

respect to µ′, and logqks ∈ Q for all k and s , log µ′s ∈ Q for all s ∈ S , and log(1 + e′) ∈ Q. (Such

(qk)K
k=1

, µ′, and e′ exist by Lemma 4.) Construct matrices A′, B′, and E′ from this dataset in the

same way as A, B, and E is constructed in the proof of Lemma 3. Note that only the prices, the

objective probabilities, and the bounds are di�erent. So E′ = E and A′i = Ai and B′i = Bi for

i = 1, 2, 3. Only A′
4

and B′
4

may be di�erent from A4 and B4, respectively.

By Lemma 4, we can choose qk , µ′, and e′ such that |(θ ·A′
4
+η ·B′

4
)−(θ ·A4+η ·B4)| < π/2. We

have shown that θ ·A4+η ·B4 = −π , so the choice of qk , µ′, and e′ guarantees that θ ·A′
4
+η ·B′

4
< 0.

Let π ′ = −θ · A′
4
− η · B′

4
> 0.
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Note that θ ·A′i+η ·B
′
i+π

′Ei = 0 for i = 1, 2, 3, as (θ ,η,π ) solves system S2 for matricesA, B and

E, andA′i = Ai , B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, θ ·A′

4
+η ·B′

4
+π ′E4 = θ ·A

′
4
+η ·B′

4
+π ′ = 0.

We also have that η ≥ 0 and π ′ > 0. Therefore θ , η, and π ′ constitute a solution to S2 for matrices

A′, B′, and E′.

Lemma 11 then implies that there is no solution to system S1 for matrices A′, B′, and E′. So

there is no solution to the system comprised by (10), (11), and (12) in the proof of Lemma 3.

However, this contradicts Lemma 3 because the dataset (xk ,qk) satis�es e′-PSAROEU with µ′,

log(1 + e′) ∈ Q, log µ′s ∈ Q for all s ∈ S , and logqks ∈ Q for all k ∈ K and s ∈ S .
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