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Random Utility Model

▶ Consider a group of individuals making a choice among the

finite set X of alternatives:

▶ We observe a percentage ρ(D, x) of people who choose each

alternative x from a subset D ⊆ X .

– Example: X = {a, b, c , d}
– ρ({a, b, c , d}, a) = 20%

– ρ({a, b, c}, a) = 23%

–
...

– ρ({c , d}, d) = 3%.

▶ This type of data is very common in economics, for example

market share data.
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Random Utility Model

▶ One fundamental model to describe this kind of data is

Random utility model.

▶ This model specifies a probability distribution over possible

rankings over X

▶ Example:

– 10% of individuals have ranking a ≻ b ≻ c ≻ d

– 0% of individuals have ranking a ≻ b ≻ d ≻ c

–
...

– 20% of individuals have ranking d ≻ c ≻ b ≻ a
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Random Utility Model

▶ Falmagne (1978) provides a necessary and sufficient condition

on the data ρ under which ρ is consistent with a random utility

model, that is there exists a probability distribution µ over

rankings ≻ on X :

ρ(D, x) = µ
({

≻
∣∣x ≻ y for all y ∈ D \ x

})
▶ Falmagne (1978) assumes that data is complete. That is, we

know choice frequency ρ(D, x) of any alternative x ∈ D from

any subset D of X .

▶ In reality, however, sometimes the data is incomplete.
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Example: Transportation

▶ Consider the following transportation methods:

X = {bus, train, walk, drive}.

▶ The government may be able to estimate the market share of

public transportation methods (bus or train) based on the

revenues.

▶ However, it may be difficult for the government to know

whether a passenger drives or walks (unless the government

conducts a survey).

▶ Choice frequencies of walk and drive may not be available.
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Examples

▶ Market Shares of Private Companies

– One definition of market share is the percentage of a

company’s total sales divided by the market’s total sales.

– However, private companies sometimes do not disclose

their financial information including total sales.

– Market share of private companies may not be observable.

▶ School Choice with Private Schools

– Applicants submit their rankings among public schools but

not private schools.

– Choice frequencies of private schools may not be

observables.
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Our Question

▶ In this setup of missing data, what is a necessary and sufficient

condition on the observable data ρ under which ρ is consistent

with random utility model µ?
▶ It is known that obtaining a tight necessary and sufficient

condition is very difficult for the case of incomplete data in

general.

– When choice frequency is observable only for binary sets,

how to obtain a tight necessary and sufficient condition

has been an open question since the 1980s despite

continuous effort in math, psychology, and economics.

– The tight characterization is know only for the case when

the number of alternatives is less than eight.
▶ We found a tight necessary and sufficient condition for this

setup of missing data.
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Model

▶ X : a finite set of alternatives.

▶ X ∗: a subset of X . (the set of unobservable alternatives)

– Assume that the choice frequencies of elements of X ∗ are

not observable (even if a choice set includes the

alternatives).

– Let X̃ = X \ X ∗ (the set of observable alternatives).

▶ D ⊆ 2X : a set of choice sets.

– In this presentation for simplicity, assume D = 2X \ ∅.
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Model

▶ M̃ = {(D, x) ∈ D × X |x ∈ D, x ∈ X̃ ,D ∈ D}.

– The choice frequency ρ over (D, x) is observable (i.e.,

defined) if and only if (D, x) ∈ M̃.

▶ Note that this does not mean that we cannot know anything

about choice frequencies of x∗ ∈ X ∗.

– When x∗ ∈ X ∗ is the only one unobservable alternative in

the choice set D , ρ(D, x∗) can be calculated as

1 −
∑

y∈D\{x∗}

ρ(D, y).
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Example (Transportation):

▶ The government may be able to estimate the market share of

public transportation methods (bus or train) based on the

revenues.

▶ However, it is sometimes difficult for the government to know

fractions of people who drive or walk.

▶ In this case, X = {bus, train, walk, drive} and

X ∗ = {walk, drive}.
▶ We assume that depending on locations of homes, some

options are not available:

D =
{
{w}, {w , b}, {w , t}, {w , b, t},

{w , d}, {w , d , b}, {w , d , t}, {w , d , b, t}
}
.
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Random Utility Rationalization

Let L be the set of rankings on X .

Definition 1
An incomplete dataset ρ is random utility (RU) rationalizable if

there exists µ ∈ ∆(L) such that for any (D, x) ∈ M̃,

ρ(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ {x}).
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Falmagne (1978) and Block-Marschak polynomial

Assuming X ∗ = ∅ and D = 2X \ ∅, Falmagne (1978) showed that

the following statements are equivalent

(i) ρ is RU rationalizable

(ii) K (ρ,D, x) ≥ 0 for all (D, x) such that x ∈ D ∈ 2X , where

K (ρ,D, x) ≡
∑

E :E⊇D

(−1)|E\D|ρ(E , x).

▶ Example:

– If D = X \ {y}, then K (ρ,D, x) = ρ(D, x)− ρ(X , x) ≥ 0.

– If D = X \ {y , z}, then K (ρ,D, x) =

ρ(D, x)− ρ(D ∪ y , x)− ρ(D ∪ z , x) + ρ(X , x) ≥ 0.
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Falmagne (1978) and Block-Marschak polynomial

▶ Even for an incomplete data, note that BM polynomial

K (ρ,D, x) can be calculated if (D, x) ∈ M̃.

▶ Mobius inversion implies that if ρ is a random utility model

(represented by µ), then

K (ρ,D, x) = µ(≻ |z ≻ x ≿ y for all y ∈ D and all z ̸∈ D).

For simplicity, I write the right hand side as

µ(≻ |Dc ≻ x ≿ D).
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Definition

A collection C of subsets of X is a test collection if there exist

▶ a nonempty set A ⊊ X \ X ∗ of observable alternatives and

▶ a collection E ⊊ 2X
∗

of sets of unobservables alternatives

such that

C = {A ∪ E |E ∈ E}.

and E is an upper set:

D ∈ E ,D ⊆ E ⇒ E ∈ E .
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Theorem

(a) An incomplete dataset ρ ∈ ℜM\M∗

+ is RU-rationalizable if and

only if the following two conditions hold:

▶ (i) for any (D, x) ∈ M \M∗ such that 1 < |D| < |X |,
K (ρ,D, x) ≥ 0,

▶ (ii) for any test collection C ⊆ D,( ∑
(D,x):D∈C,D∪x ̸∈C

K (ρ,D∪x , x)−
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F∪y , y)

)
≥ 0

Comments:

▶ BM polynomial K (ρ,D, x) is computable based on observable

data if and only if (D, x) ̸∈ M∗.

▶ Condition (ii) can also be tested based on observables.

▶ Condition (ii) has a very intuitive explanation based on network

flow.
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Theorem

(b) For any inequality condition in (i) or (ii), there exists an

incomplete dataset ρ̂ ∈ ℜM\M∗

+ that violates the condition but

satisfies all the other inequality conditions in (i) and (ii).

Comments:

▶ Not only does it gives a necessary and sufficient condition, but

also it is minimal in the sense of (b).

▶ It is known that the set of random utility model is a polytope.

Our conditions specify all facet defining inequalities of the

polytope.

▶ In general, it is known that obtaining a tight necessary and

sufficient condition is very hard.
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Implication

▶ In empirical IO, people often put all unobservable alternatives

together and treat them as one outside option, even when the

analyst knows which elements are in X ∗.

▶ Theorem implies that this approach may ignore some features

of random utility model; more precisely, it does not consider

conditions (ii) in Theorem 1.

▶ Our contribution is to demonstrate this difference clearly by

providing a minimal set of testable conditions for observed

choice probabilities to be consistent with a random utility

model.
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In the paper.....

▶ We prove the result using a network flow theory.

– To test random utility model, network flow approach is

more efficient than the standard linear programming

approach because of network flow structure.

▶ We obtained a bound for missing choice frequencies.

▶ We have an application to a real dataset
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Sketch of the proof

▶ Our problem is to find the following:

(p1) µ ∈ ∆(L)

such that for any (D, x) ∈ M \M∗,

ρ(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ {x}).

▶ We rewrite the problem into an existence of a flow in a

network.
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P2– network flow (Fiorini, 2004)

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅

▶ Fiorini proved Falmagne’s result

by using network flow theory:

– Each node is a subset of X

– Each arc is connecting a

node D and D ∪ x .

– For each ranking there is a

directed path from ∅ to X

▶ We can view random utility

models as distributions over

paths.

▶ Each path corresponding a

ranking ≻ is assigned a flow

µ({≻}).
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P2 – network flow (Fiorini, 2004)

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅

By the construction, we have

following restrictions on flows:

▶ Flow r(D,D ∪ x) of an arc from

D to D ∪ x equals to

µ({≻ |Dc ≻ x ≿ D}) = K (ρ,D, x).

▶ (Any flow of an arc) ≥ 0.

▶ (Inflow) = (outflow)

▶ (The Sum of flows into X ) = 1.

One to One mapping
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P2 – network flow (Fiorini, 2004)

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅

By the construction, we have

following restrictions:

▶ Flow of an arc from DtoD ∪ x is

K (ρ,D, x) = µ({≻ |Dc ≻ x ≿ D}).
▶ (Any flow of an arc) ≥ 0.

▶ (Inflow) = (outflow)

▶ (The Sum of flows into X ) = 1.
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Rewriting the problem

We showed that (P1) is equivalent to the following:

(P2) r ∈ ℜ{(D\x,D)|(D,x)∈M}

such that

r(D \ x ,D) = K (ρ,D, x) for all (D, x) ∈ M \M∗,

(All observable flows are determined by BS polynomials)

r(D \ x ,D) ≥ 0,

(All flows are nonnegative)∑
x∈D r(D \ x ,D) =

∑
y ̸∈D r(D,D ∪ y) for all D ∈ D,

(Inflows to D) = (Outflows from D)∑
x∈X r(X \ x ,X ) = 1.

(The sum of flows into X is one).
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Our approach

▶ Let X = {a, b, c , d} and

X ∗ = {c , d}
▶ Given the observable data, we

can calculate flows of some arcs

(black flows).

▶ The problem becomes: under

what conditions on observable

flows we can fill in all unknown

flows (yellow flows) in a way

that satisfies all restrictions?

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅
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Our solution

▶ For each test collection, we

check that the sum of inflows

must be equal to the sum of

outflows.

▶ For the test collection

C = {{a, c}, {a, d}, {a, c , d}},
red are outflows, blue are

inflows, yellow are unknown

inflows.

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅

▶ Note that there are no unobservable outflows by the defintion

of test collections.
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Our solution

▶ Let

C = {{a, c}, {a, d}, {a, c , d}}.
▶ (Red out-flows)=

(Yellow in-flows)

+ (Blue in-flows)

▶ Since (Yellow in-flows) ≥ 0, we

have

(Red out-flows) − (Blue

in-flows) ≥ 0!

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅

▶ Our conditions: These inequalities must be non-negative for all

partitions.
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Our solution

▶ C = {{a, c}, {a, d}, {a, c , d}}.
▶ (Red out-flows)

=
∑

(D,x):D∈C,D∪x ̸∈C

K (D ∪ x , x)

▶ (Blue in-flows)

=
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F ∪ y , y)

▶ Condition (ii) of the threom is

equivalent to (Red out-flows) −
(Blue in-flows) ≥ 0.

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅
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Theorem

(a) An incomplete dataset ρ ∈ ℜM\M∗

+ is RU-rationalizable if and

only if the following two conditions hold:

▶ (i) for any (D, x) ∈ M \M∗ such that 1 < |D| < |X |,
K (ρ,D, x) ≥ 0,

▶ (ii) for any essential test collection C,( ∑
(D,x):D∈C,D∪x ̸∈C

K (ρ,D∪x , x)−
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F∪y , y)

)
≥ 0

Comment:

▶ The explanation so far is for the necessity of the condition.

▶ For sufficiency, we proved a feasibility theorem of a network.
details
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Theorem

(a) An incomplete dataset ρ ∈ ℜM\M∗

+ is RU-rationalizable if and

only if the following two conditions hold:

▶ (i) for any (D, x) ∈ M \M∗ such that 1 < |D| < |X |,
K (ρ,D, x) ≥ 0,

▶ (ii) for any essential test collection C,( ∑
(D,x):D∈C,D∪x ̸∈C

K (ρ,D∪x , x)−
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F∪y , y)

)
≥ 0
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Non redundancy

(b) For any inequality condition in (i) or (ii), there exists an

incomplete dataset ρ̂ ∈ ℜM\M∗

+ that violates the condition but

satisfies all the other inequality conditions in (i) and (ii).

▶ Remember

δ(C) ≡
∑

(D,x):D∈C,D∪x ̸∈C

K (ρ,D∪x , x)−
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F∪y , y).

▶ We fix any essential test collection C.

▶ We show that there exists a flow such that δ(C) < 0 but

δ(C′) ≥ 0 for all other test collection C′.
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Interim Summary

▶ Question: What is a necessary and sufficient condition for an

incomplete dataset ρ to be consistent with a random utility

model?

▶ We provide the tight necessary and sufficient condition.

▶ High level take away is:

– In empirical IO, people often put all unobservable

alternatives together and treat them as one outside option,

even when the analyst knows which elements are in X ∗.

– Theorem implies that this approach may ignore some

features of random utility model; more precisely, it does

not consider conditions (ii) in Theorem 1.

▶ Our approach can be useful for practical purposes such as

obtaining bounds for unobservable choice frequencies
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Bounds for unobservable choice probabilities

▶ Remember that the transportation example: the government

does not know how people commute unless they use public

transportation, i.e., X = {bus, train, walk, drive} and

X ∗ = {walk, drive}
▶ Analyst is often interested in predicting choice probabilities on

unobservable menus.

▶ For instance, that the government is considering introducing a

new tax on gasoline to encourage people to commute by public

transportation.

32 / 58



Bounds for unobservable choice probabilities

▶ To assess the potential impact of the new policy, the

government would like to estimate the fraction of people who

commute by private car.

▶ We identify the possible upper and lower bounds on the

proportion of drivers following the analysis of Manski (2007).

▶ Let ρ ∈ ℜM\M∗

+ be a given incomplete dataset.

▶ Let Γ be the set of complete data ρ̂ that is RU-consistent with

the given incomplete dataset ρ.
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Bounds for unobservable choice probabilities

▶ Note that by using (P1), Γ can be written as follows:

{
ρ̂ ∈ ℜ{(D,x)|x∈D∈2X}

+

∣∣∣∣ There exists a µ ∈ ∆(L) that solves (P1)

and saisfies ρ = ρ̂ on M\M∗

}

▶ Given (D, x) ∈ M \M∗, we want to identify the bounds for

ρ̂(D, x) for some ρ̂ ∈ Γ.

▶ By the equivalence between, (P1) and (P2), we can rewrite the

set Γ as follows:{
ρ̂ ∈ ℜ{(D,x)|x∈D∈2X}

+

∣∣∣∣ There exists a flow r that sloves (P2)

and satisfies ρ̂ = ρ on M\M∗

}
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Bounds for unobservable choice probabilities

▶ As in Manski (2007), the identification region is convex and all

the conditions are linear, so that that for each ρ∗(D, x) for

some (D, x) ∈ M∗, is an interval.

▶ Compared with the identified region in terms of (P1), this

formulation (P2) using the network flow has a computational

advantage.

▶ Because of the network structure, the matrix becomes an

incident matrix, which allows us to compute the bounds

efficiently. (Even if you do not buy the axiomatic

characterization, our approach is useful.)

35 / 58



Bounds for unobservable choice probabilities

▶ Alternative “efficient” but naive approach to obtaining a bound

is simply ignore RU rationalizability.

▶ To see how much we can tight the bounds by considering RU

rationalizability formally, we apply this method to a stochastic

choice dataset from the experiment conducted by McCausland

et al. (2020).
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Bounds for unobservable choice probabilities

▶ In the experiment, the authors fixed a set X = {0, 1, 2, 3, 4} of

five lotteries and asked 141 participants to choose one from

each subset of X

▶ Each participant made decision six times for each menu.

▶ We aggregate these choice frequencies to construct a complete

dataset ρ. (We modified ρ so that it becomes RU

rationalizable.)

▶ In this exercise, we mask the choice probabilities of lotteries 0

and 1 and pretend not to observe them; in other words, we set

X ∗ = {0, 1} and D = 2X .
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Bounds for unobservable choice probabilities

▶ Under this setup, we will compute two types of bounds of the

probability of lottery 0 being chosen in a given choice set D

that contains both lotteries 0 and 1.

▶ One of them is the trivial bound that is calculated by0, 1 −
∑

x∈D∩{2,3,4}

ρ(D, x)

 .

▶ The other one is the bound that takes the RU-rationalizabity

into account and is computed by the linear program (P2).

▶ The goal here is to examine how much the random utility

assumption shrinks the identified set and improves the

prediction of unobservable choice probabilities.
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Bounds for unobservable choice probabilities

▶ Overall, the identified sets of the random utility model, shown

in red, are much smaller than the naive bounds, shown in blue,

especially when the choice set is large.
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Relationship with Mcfadden and Richter (1991)

▶ Mcfadden and Richter (1991) provide a characterization of the

random utility model.

▶ Unlike the characterization of Falmagne (1978), the

characterization of Mcfadden and Richter (1991) holds even for

the case when the dataset is incomplete.

▶ On the other hand, the conditions of Mcfadden and Richter

(1991) involve infinite number of sequences and some of the

condition are redundant.
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Mcfadden and Richter (1991)

▶ Let F be the set of pairs (D, x) such that ρ(D, x) is

observable to the analysts. P(F) denotes the set of stochastic

choice functions on F .
▶ Remember that M = {(D, x) ∈ D × X |x ∈ D} and

M∗ = {(D, x) ∈ 2X × X |x ∈ X ∗ or D ̸∈ D}.
▶ We assume F = M\M∗.
▶ In Falmagne, F = {(D, x) ∈ 2X ×X |x ∈ D}. In Mcfadden and

Richter, F is any subset of M.

Definition 2
(Mcfadden and Richter polynomias)Let F ⊆ M and ρ ∈ P(F).

For any sequence (Di , xi)
n
i=1 in M define

R((Di , xi)
n
i=1, ρ) = max

≻∈L

n∑
i=1

1{xi ≻ Di \ xi} −
n∑

i=1

ρ(Di , xi).
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Mcfadden and Richter (1991)

Theorem 3
(Mcfadden and Richter(1991))Let F ⊆ M and ρ ∈ P(F). For any

ρ ∈ P(F), ρ is a random utility function if and only if

R((Di , xi)
n
i=1, ρ) ≥ 0 for any sequence (Di , xi)

n
i=1 in F .

▶ Notice that same (D, x) appears arbitrary many times in the

sequence (Di , xi)
n
i=1.

▶ Although there are finitely many pairs (D, x), the number of

the sequences to be tested is infinite.
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Mcfadden and Richter (1991)

Definition 4
(i) For any positive integer m, a sequence (Di , xi)

n
i=1 in M is said

to be of repetition of upto m if for each (D, x) ∈ M such that

|D| > 2,

#{i | (Di , xi) = (D, x)} ≤ m.

(ii) a sequence (Di , xi)
n
i=1 in M is called redundant if

∃D ∈ {Di}ni=1 such that ∀x ∈ D, ∃i such that (D, x) = (Di , xi).
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Proposition

▶ When the dataset is complete (i.e.,

F = {(D, x)|x ∈ D ∈ 2X}), we can show that considering

non-redundant sequences that of repetition of upto 2 is enough

to characterize the random utility model.

– A BS polynomial can be written as a MR polynomial for

non-redundant sequences of repetition of up to 2.

– However, the converse does not hold: Not all MR

polynomials for non-redundant sequences of repetition of

up to 2 is a BS polynomial.
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Proposition

▶ When the dataset is incomplete (in our sense), we can show

that we need check more sequences.

– By our theorem, we can calculate exactly how many

repetitions of non-redundant sequences we need.

– However, even such an improvement of Mcfadden and

Richter’s (1991) result would involve redundancy, unlike

our theorem.

– This is because not all MR polynomials for non-redundant

sequences correspond to a BS polynomial
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Lemma 5
A nonnegative solution ρ∗ exists to (P1) if and only if a

nonnegative solution r∗ exists to (P2).

Proof:
▶ Define f : RM → R{(D\x,D)|(D,x)∈M} such that

f (p)(D \ x ,D) = K (p,D, x)

▶ Given the solution ρ∗ of P1, f (ρ∗) becomes a solution of P2.
▶ Inverse of f : R{(D\x,D)|(D,x)∈M} → RM exists

f −1(r)(D, x) =
∑

E :E⊇D

r(E \ x ,E )

▶ Given solution r∗ of P2, f −1(r∗) becomes a solution of P1.
Back
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Lemma

▶ A collection C ∈ 2X
∗

is said to be complete in X ∗

D ∈ C =⇒ ∀x ∈ X ∗,D ∪ x ∈ C.

▶ Lemma: A solution to (P2) exists if and only if δ(C) ≥ 0 for
any complete collection C in X ∗, where

δ(C) =

 ∑
(D,x):D∈C,D∪x ̸∈C

K(ρ,D ∪ x , x)−
∑

(E ,y):E ̸∈C,E∪y∈C
K(ρ,E ∪ y , y)


+1{t ∈ C, s ̸∈ C} − 1{s ∈ C, t ̸∈ C}.

– If the collection is not complete, then
• there is an unobservable outflow, thus there is no testable implication.
• u becomes infinity; thus the inequality holds.
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Lemma

▶ Remember a test collection C ⊂ 2X is such that

C = {A ∪ E | E ∈ E},

where E is a upper set of X ∗ in 2X
∗

and A ⊆ X \ X ∗.

▶ Lemma If δ(C) ≥ 0 is for any test collection C, then δ(E) ≥ 0

for any complete collection E in X ∗.

– Step 1: δ(C) =
∑

D∈C δ(D)

– Step 2: For any A ⊆ X \ X ∗, let

CA ≡ {D ∈ C|D \ X ∗ = A}. Notice

– CA ∩ CB = ∅ if A ∩ B = ∅
– C =

⋃
A⊆X\X∗ CA

– δ(C ) =
∑

A⊆X\X∗ δ(CA).
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Lemma

▶ Remember a test collection C = {A∪ E | E ∈ E} is essential if

– A ̸= ∅ and A ⊊ X \ X ∗,

– E ̸= 2X
∗
.

▶ Lemma: No need to check non-essential test collections.
Details

▶ Combining results, we have:

– A solution to (P2) exists if and only if K (ρ,D, x) ≥ 0 for

all (D, x) ∈ M such that x ̸∈ X ∗, and δ(C) ≥ 0 for any

essential collection C.
Back
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Observations

▶ If C = {A∪E | E ∈ 2X
∗} for some A ⊂ X \X ∗, then δ(C) = 0.

▶ If C = {(X \ X ∗) ∪ E |E ∈ E} for some E ⊂ 2X
∗

then δ(C) ≥ 0.

▶ If C = {∅ ∪ E |E ∈ E} for some E ⊂ 2X
∗

then δ(C) ≥ 0.

Back
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Network flow

▶ Network is a pair of a node set N and a set of edges

A ⊂ N ×N .

▶ A function f : A → ℜ is called a flow on a network (N ,A).

▶ Two nodes s (source) and t (terminal) play special roles. All

flows are from s; all flows are into t.

▶ In our setup,

N = 2X ,

A = {(D,D ∪ x)|D ⊂ X , x ̸∈ D},
s = ∅,
t = X .

51 / 58



Feasibility Theorem

Let x ∈ N , f (x ,N ) ≡
∑

y∈N f (x , y); f (N , x) ≡
∑

y∈N f (y , x).

Let l , u : A → ℜ+ such that l(x , y) ≤ u(x , y) for any (x , y) ∈ A.

There exists f : A → ℜ+ such that

f (x ,N )− f (N , x) = 0 ∀x ∈ N \ {s, t}, (1)

f (N , t) = 1, (2)

l(x , y) ≤ f (x , y) ≤ u(x , y) ∀(x , y) ∈ A (3)

if and only if the following condition holds for all C ⊂ N

∑
(x,y)∈C×Cc

u(x , y)−
∑

(x,y)∈Cc×C

l(x , y) ≥


1 if t ̸∈ C, s ∈ C,
−1 if t ∈ C, s ̸∈ C,
0 otherwise.
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Feasibility Theorem

▶ We prove the result by using the min-cut maximum-flow

theorem.

▶ Notice that the left hand side of the inequality is the upper

bound of flow coming out of C minus the lower bound of flow

coming into C. On the other hand, the right hand side is the

actual net outflow at C.

∑
(x,y)∈C×Cc

u(x , y)−
∑

(x,y)∈Cc×C

l(x , y) ≥


1 if t ̸∈ C, s ∈ C,
−1 if t ∈ C, s ̸∈ C,
0 otherwise.

▶ We apply the theorem to the network flow defined by (P2).
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Application to P2

{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c , d}

{a} {b} {c} {d}

∅

▶ To apply the lemma to P2, let
l(D \ x ,D) = K (ρ,D, x) if x ̸∈ X ∗,

u(D \ x ,D) = K (ρ,D, x) if x ̸∈ X ∗,

l(D \ x ,D) = 0 if x ∈ X ∗,

u(D \ x ,D) = +∞ if x ∈ X ∗.
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Feasibility Theorem

There exists f : A → ℜ+ such that

f (x ,N )− f (N , x) = 0 ∀x ∈ N \ {s, t},

f (N , t) = 1,

l(x , y) ≤ f (x , y) ≤ u(x , y) ∀(x , y) ∈ A

if and only if the following condition holds for all C ⊂ N

∑
(x,y)∈C×Cc

u(x , y)−
∑

(x,y)∈Cc×C

l(x , y) ≥


1 if t ̸∈ C, s ∈ C,
−1 if t ∈ C, s ̸∈ C,
0 otherwise.
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Feasibility Theorem

▶ The feasibility theorem requires to test any test collection of

nodes.

▶ Need lemmas to show checking only essential test collections is

sufficient. Details

▶ Also for any test collection C,∑
(x,y)∈C×Cc

u(x , y)−
∑

(x,y)∈Cc×C

l(x , y)

=
∑

(D,x):D∈C,D∪x ̸∈C

K (ρ,D ∪ x , x)−
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F ∪ y , y).
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Feasibility Theorem

▶ The feasibility theorem requires to test any test collection of

nodes.

▶ Need lemmas to show checking only essential test collections is

sufficient.

▶ Also for any test collection C,∑
(x,y)∈C×Cc

u(x , y)−
∑

(x,y)∈Cc×C

l(x , y)

=
∑

(D,x):D∈C,D∪x ̸∈C

K (ρ,D ∪ x , x)−
∑

(F ,y):F ̸∈C,F∪y∈C

K (ρ,F ∪ y , y).
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P1

▶ Our problem is to find the following:

(p1) µ ∈ ∆(L)

such that for any (D, x) ∈ M \M∗,

ρ(D, x) = µ( ≻∈ L | x ≻ y for all y ∈ D \ {x}).
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